簡易檢索 / 詳目顯示

研究生: 林朝順
Lin, Chao-shun
論文名稱: 奈米複合材料機械性質之估測
Estimation of Mechanical Properties of Nanocomposites
指導教授: 胡潛濱
Hwu, Chyanbin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 奈米碳管楊氏係數
外文關鍵詞: Young’s modulus, Carbon nanotubes
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米碳管為目前新興的補強材料,它具有優秀的機械性質,如高強度、高韌性、高硬度、高導電性和高導熱性之特性。從許多研究得知,添加了少量的奈米碳管就可以提升整體複合材料許多的機械性質,因此本文想了解在樹酯內單獨添加少量的奈米碳管或者碳纖維結合奈米碳管的機械性質並比較兩者之差異性。
    本文是藉由等效均質法去估測,在各種形式下的奈米碳管複合材料的楊氏係數和剪力模數,並為了驗證本文所估測的力學性質之正確性,我們與Rule of Mixture、Eshelby’s Equivalent Inclusion Theory、Mori-Tanaka Method這三種理論解相互比較,其結果顯示本文藉由等效均質理論估測的力學性質具有一定的準確性。從數值模擬結果顯示添加1wt%短纖的奈米碳管,可使整體複合材料的軸向楊氏係數比基材楊氏係數成長了45%左右。此外添加少量的奈米碳管所形成之CF/CNT/polymer複合材料,可以大幅增加側向楊氏係數和剪力模數,並以奈米碳管隨機散佈於樹酯中所得到的力學性質效果最好。

    The carbon nano-tube (CNT) is the emerging reinforcement materials which has excellent mechanical properties, like high strength, toughness, hardness, electric conductivity and heat conductivity. By reviewing many researches, we know that adding a few CNT in the polymer can enhance mechanical properties. Therefore, this paper will compare the mechanical properties of reinforcement polymer by adding carbon nano-tubes (CNT) individually or adding carbon fibers (CF) and carbon nano-tubes together.
    In this paper, we estimate the Young’s modulus and shear modulus of carbon nano-tube composites by using equivalent homogeneous theory. To verify the simulated results, we compare our data with those estimated by the Rule of Mixture, the Eshelby’s Equivalent Inclusion Theory and the Mori-Tanaka Method. The results show the mechanical properties estimated by using equivalent homogeneous theory have certain level of accuracy. According to the numerical results, the addition of 1wt% (by weight) of short nano-tubes makes the Young's modulus of the composite material in longitudinal direction the growth of 45%. In addition, adding CNT to the material, composed of carbon fibers (CF) and polymer, enables the Young's modulus in transverse direction and shear modulus to increase greatly, and the strengthening effect are the best with a random and uniform distribution of nano-tubes in the matrix.

    中文摘要 英文摘要 致謝 目錄………………………………………………………………… i 表目錄……………………………………………………………… iii 圖目錄……………………………………………………………… iv 符號說明…………………………………………………………… vi 第一章 緒論……………………………………………………… 1 1.1前言…………………………………………………………… 1 1.2文獻回顧……………………………………………………… 1 1.2.1奈米碳管及其複合材料力學性質量測………………………1 1.2.2奈米碳管及其複合材料之力學模擬…………………………2 1.3研究動機…………………………………………………………3 1.4本文架構…………………………………………………………4 第二章 奈米碳管結構和應用………………………………………5 2.1單壁奈米碳管的結構……………………………………………5 2.2奈米碳管的應用…………………………………………………6 2.3奈米碳管複合材料結構與製造…………………………………8 第三章 理論架構……………………………………………………10 3.1等效均質理論……………………………………………………10 3.2複合材料等效理論………………………………………………14 3.2.1混合法則………………………………………………………14 3.2.2 Eshelby’s Equivalent Inclusion Theory………………… 15 3.2.3 Mori-Tanaka Method……………………………………… 16 3.2.4 Halpin-Tsai equation…………………………………… 17 第四章 數值模擬分析………………………………………………19 4.1元素選用及尺寸無因次化………………………………………19 4.2奈米碳管複合材料RVE模型…………………………………… 20 4.2.1長纖奈米碳管複合材料RVE模型…………………………… 21 4.2.2短纖奈米碳管複合材料RVE模型…………………………… 22 4.2.3理論解與數值解比較………………………………………… 23 4.3多尺度模擬碳纖維/奈米碳管/樹酯複合材料RVE模型……… 24 第五章 結論…………………………………………………………29 5.1結論………………………………………………………………29 5.2未來展望…………………………………………………………30 參考文獻…………………………………………………………… 31 附表………………………………………………………………… 36 附圖………………………………………………………………… 42 附錄………………………………………………………………… 63

    [1]Iijima, S., “Helical microtubules of graphitic carbon,” Nature, Vol. 354, P. 56, 1991.
    [2]http://en.wikipedia.org/wiki/Carbon_nanotube
    [3]http://en.wikipedia.org/wiki/Space_elevator
    [4]Salvetat, J. P., Bonard, J. M., “Mechanical properties of carbon nanotubes,” Applied physics A, Vol. 69, P. 255, 1999.
    [5]Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S., “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
    [6]Qian, D., Dickey, E.C., Andrews, R. and Rantell, T., “Load transfer and deformation and mechanisms in carbon nanotube -polystyrene composites,” Applied Physics Letters 76 20, pp. 2868–2870, 2000.
    [7]Lim, D.S., An, J., W. and Lee, H.J., “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon /Carbon Composites,” Wear, Vol. 252, pp.512-517, 2002.
    [8]Li, X., Gao, H., Scrivens, W.A., Fei, D., Xu, X., Sutton, M.A., Reynolds, A.P. and Myrick, M.L.,“Nanomechanical Characterization of Single-walled Carbon Nanotube Reinforced Epoxy Composites,” Nanotechnology, 15(11): 1416-1423, 2004.
    [9]Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte K., “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology 64 2363–2371, 2004.
    [10]Lu, J.P., “Elastic Properties of Carbon Nanotubes and Nanoropes,” Physical Review Letters, Vol. 79, pp.1297-1300, 1997.
    [11]Hernande, E., Goze, C., Bernier, P., Rubio, A., “Elastic Properties of C and BxCyNz Composite Nanotubes,” Physical Review Letters, Vol. 80, pp.4502-4505, 1998.
    [12]Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S., “The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation,” Compos Sci Technol 63, pp. 1655–1661, 2003.
    [13]Zhu, R., Pan, E., Roy, A.K., “Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites,” Materials Science & Engineering A, vol. 447, no. 1-2, pp. 51-57, 2007.
    [14]Liu, Y.J. and Chen, X.L., “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element,” Mechanics of Materials, Vol. 35, pp. 69-81, 2003.
    [15]Liu, Y.J. and Chen X.L., “Continuum models of carbon nanotube-based composites using the boundary element method,” Electronic Journal of Boundary Elements, vol. 1, no. 2, pp. 316-335, 2003.
    [16]Song, Y.S. and Youn, J.R., “Modeling of effective elastic properties for polymer based carbon nanotube composites,” Polymer 47 1741–1748, 2007.
    [17]Odom, T.W., Huang, J-L, Kim, P., Lieber, C.M., “Structure and electronic properties of carbon nanotubes,” Journal of Physical Chemistry B, 104:2794–809, 2000.
    [18]Dresselhaus, M.S., Dresselhaus, G. and Saito, R., “Physics of Carbon Nanotubes,” Carbon, Vol. 33, pp.883-891 , 1995
    [19]Ma, R. Z., Wu, J., Wei, B. Q., Liang, J., and Wu, D. H., “Processing and properties of carbon nanotubes-nano-SiC ceramic,” Journal of Materials Science, 33, 21, pp.5243 – 5246, 1998.
    [20]Zhang, M., Atkinson, K.R., Baughman, R.H., “Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology,” Science, 306 1358, 2004.
    [21]Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R. and Journet, C., Bernier, P., Poulin, P., “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, 290, pp.1331–1334, 2000.
    [22]Jiang, K., Li, Q., Fan, S., “Nanotechnology: Spinning continuous carbon nanotube yarns,” Nature 419, 801, 2002.
    [23]Ge, M. and Sattler, K., “Bundles of carbon nanotubes generated by vapor-phase growth,” Applied Physics Letters, 64 6, pp. 710–711, 1994.
    [24]Saito, Y., Nishikubo K., Kawabata K., Matsumoto T., “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge,” Journal of Applied Physics, 80(5):3062–7, 1996.
    [25]Zhang, Y., Iijima S., “Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperatures,” Applied Physics Letters, 75(20):3087–9, 1999.
    [26]Thostenson, E.T., Ren, Z., Chou, T.W., “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, 61 1899–1912, 2001.
    [27]Garmestani, H., Al-Haik, M.S., Dahmen, K., Tannenbaum, R., Li, D. and Sablin, S.S., “Polymer-mediated alignment of carbon nanotubes under high magnetic fields,” Advanced Materials, 15, pp. 1918–1921, 2003.
    [28]Ko, f., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G., Li, C., Willis, P., “Electrospinning of continuous carbon nanotube -filled nanofiber yarns,” Advanced Materials, v15, n14, p 1161-1165, July 17, 2003.
    [29]Russell, J.M., Oh, S., LaRue, I., Zhou, O., Samulski, E.T., “Alignment of nematic liquid crystals using carbon nanotube films,” Thin Solid Films, 509 53 – 57, 2006.
    [30]Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer J.E., and Winey, K.I., “Aligned single-wall carbon nanotubes in composites by melt processing methods,” Chemical Physics Letters, 330, pp. 219–225, 2000.
    [31]Jin, L., Bower, C., Zhou, O., “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Applied Physics Letters, 73:1197, 1998.
    [32]Bower, C., Zhu, W., Jin, S. and Zhou O., “Plasma-induced alignment of carbon nanotubes”, Applied Physics Letters, 77 6, pp. 830–832, 2000.
    [33]Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren Z.F. and Chou, T.W., “Carbon nanotube/carbon fiber hybrid multiscale composites,” Journal of Applied Physics, 91(9), pp. 6034–6037, 2002.
    [34]Christensen, R.M., “Mechanics of Composite Materials,” John-Wiley, New York, 1979.
    [35]劉冠伶, “電子封裝之等效分析”,國立成功大學航空太空研究所碩士論文, 2008.
    [36]Sun, C.T., Vaidya, R.S., “Prediction of composite properties from a representative volume element”, Composites Science and Technology, v56, n2, p171-179, 1996.
    [37]Gibson, R.F., “Principles of Composites Material Mechanics”, McGraw-Hill, New York, 2007.
    [38]Eshelby, J.D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society of London, A241, pp.376-396, 1957.
    [39]Tandon, G.P. and Weng, G.J., “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polymer Composites, 5 4, pp. 327–333, 1984.
    [40]Nemat-Nasser, S. and Hori, M., “Micromechanics: Overall Properties of Heterogeneous Materials,” North-Holland, 1993.
    [41]Mori and Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Met., 21, pp.571-574, 1973.
    [42]Halpin, J.C. and Kardos, J.L., “The Halpin–Tsai equations: a review,” Polym Eng Sci, 16, pp. 344–352, 1976, 1976.
    [43]ANSYS 10.0 Documentation:ANSYS Element Reference.
    [44]Fan, C.W., Liu, Y.Y., Hwu, C., “Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes,” Appl Phys A 95: 819–831, 2009
    [45]Li, C., Chou, T.W. “Elastic properties of single-walled carbon nanotubes in transverse directions,” Physical Review B 69, 073401, 2004

    下載圖示 校內:立即公開
    校外:2009-08-14公開
    QR CODE