簡易檢索 / 詳目顯示

研究生: 黃瀚緯
Huang, Han-Wei
論文名稱: 雙擺變曲率滑動隔震支承之雙向動力實驗驗證研究
Dynamic Experimental Verification of Double Sliding Isolators with Variable Curvature under Bidirectional Excitations.
指導教授: 盧煉元
Lu, Lyan-Ywan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 284
中文關鍵詞: 滑動隔震雙擺摩擦支承變曲率支承支承元件測試雙向震波摩擦子尺寸效應近域震波速度相依摩擦材
外文關鍵詞: Sliding isolation, double pendulum isolator, variable curvature, near-fault earthquake, bidirectional ground motions, velocity-dependent friction coefficient, geometric effect
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前傳統滑動隔震支承(friction pendulum isolator,簡稱FPI)雖已廣泛應用於建築與橋梁中,並且在頻率內涵較多高頻的一般(遠域)震波有良好減振效能,但若是在靠近斷層的建物,易受到較多低頻內涵的近域震波影響,使隔震器產生似共振行為,以致隔震位移遽增,造成隔震器製造成本增加,並可能造成建物容許間距不足之可能。故本文針對雙擺變曲率滑動隔震支承(double sliding isolator with various curvature,簡稱DSIVC)進行實驗研究。此種先進隔震支承是由兩個曲率不固定的滑動面,以及一個中間摩擦子所組成。比對於傳統FPI支承,DSIVC支承有較多可變性,並可避免於近域震波中產生似共振行為,且在相同位移容量下,DSIVC可以較經濟的尺寸進行設計。
    本文針對DSIVC支承進行元件測試與隔震系統振動台實驗研究,並以前人所提出之理論分析方法進行驗證,本文研究內容及結果如下:(1)DSIVC支承單向與雙向往復運動下之元件測試結果,與利用理論模擬所預估之元件力與位移關係十分吻合。(2)以多種支承組合進行DSIVC之支承單向與雙向運動元件測試,並比較其實驗結果之優劣性,可得最佳之支承組合,再據以作為振動台實驗選用隔震元件之依據。(3)進行DSIVC隔震系統單向與雙向往復運動下之振動台實驗,並驗證DSIVC隔震系統分析方法之正確性。本文研究結果顯示,前人所建立之DSIVC動力分析理論確能掌握DSIVC在單向或雙向運動下之力學行為,但雙向運動之力學行為則有較大的改善空間。(4)以數值模擬方法進行雙擺變曲率DSIVC與雙擺定曲率隔震支承之減震性能比較。模擬結果顯示DSIVC能有效的改善定曲率支承在近斷層震波作用下所產生之支承位移過大問題。

    Sliding-type bearings, such as friction pendulum isolators (FPI), have been widely used for seismic protection of buildings or equipment. Nevertheless, recent literature also reveals that the isolator drift of this type of bearings may become excessively large in a near-fault earthquake with long-period components. In order to ensure the safety of the isolated building under a near-fault earthquake, the dimension of sliding bearings has be increased, which results in the increase of manufacturing cost and installation space. In view of this, some researchers have proposed using double sliding isolators with variable curvature (DSIVCs). A typical DSIVC is composed of a slider, an upper and a lower sliding surfaces with variable curvature. Compared with an FPI, the DSIVC possesses adaptive nature that helps reduce seismic responses under a near-fault earthquake and thus requires smaller isolator diameter with the same capacity of isolator displacement. These features make the DSIVC a more economical and efficient isolator.
    Based on the previous theoretical studies, this study aims to provide experiment verification for the DSIVC technology through the methods of isolator element test and shaking-table test. There are two objectives in this study: (1) Conduct the element test for the DSIVC under bidirectional excitations, in order to verify the derived formula for its force-displacement relationship. The test results demonstrate that the derived formula is able to simulate the bidirectional mechanical behavior of the DSIVC isolator. (2) Conduct shaking table test to validate the dynamic equation and analysis method for a DSIVC-isolated structure under bidirectional ground excitations. The experimental results show that the derived equation and analysis method are able to capture the dynamic response of a DSIVC-isolated structure under bidirectional ground excitations.

    摘要 I 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XX 符號 XXVIII 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 雙擺定曲率摩擦支承 2 1.2.2 雙擺變曲率摩擦支承 3 1.3 研究目的 4 1.4 本文架構 4 第2章 DSIVC隔震元件之雙向運動分析理論 5 2.1 元件支承雙向運動理論分析模型及分析方法 5 2.2 數值方法與數值穩定性探討 9 2.3 DSIVC雙擺支承之回復力等效單擺公式 11 2.4 DPFPI雙擺等效單擺公式之應用 13 第3章 DSIVC元件測試實驗 23 3.1 實驗試體描述 23 3.1.1 支承曲面型式 23 3.1.2 支承摩擦子與摩擦片型式 24 3.1.3 實驗支承之種類 25 3.2 元件測試方法 26 3.2.1 實驗組立 26 3.2.2 感測器配置 26 3.2.3 加載形式 27 3.3 實驗資料處理方法 27 3.3.1 摩擦子中心位移之推導 27 3.3.2 荷重計軸力偏心效應 29 3.4 單向運動元件測試實驗與理論結果之比較 31 3.4.1 雙擺定曲率DFPI單向測試結果 32 3.4.2 雙擺變曲率DPFPI單向測試結果 33 3.5 雙向運動元件測試實驗與理論結果之比較 34 3.5.1 雙擺定曲率DFPI雙向測試結果 35 3.5.2 雙擺變曲率DPFPI雙向測試結果 35 3.5.3 不對稱雙擺FPI+PFPI雙向測試結果 36 3.6 雙向特殊行為探討 36 3.7 各類DSIVC元件測試結果之比較 39 3.7.1 不同曲盤形式之比較 40 3.7.2 不同摩擦子形式之比較 41 3.7.3 不同摩擦片形式之比較 42 3.8 小結 43 第4章 DSIVC隔震系統之動力分析理論 122 4.1 運動方程式之推導 122 4.1.1 運動數值模型 122 4.1.2 單向運動方程式 122 4.1.3 X與Y雙向合併矩陣運動方程式: 124 4.1.4 狀態空間運動方程式 125 4.2 數值分析與數值穩定性探討 126 第5章 DSIVC隔震系統之水平雙向振動台實驗驗證 145 5.1 隔震支承試體描述 145 5.2 振動台實驗方法 146 5.2.1 實驗組立 146 5.2.2 感測器配置 146 5.2.3 實驗用震波挑選 148 5.2.4 摩擦子位移量測方法 148 5.3 PFPI單擺支承實驗與理論結果之比較 149 5.3.1 水平單向運動之比較 149 5.3.2 水平雙向運動之比較 150 5.3.3 減振效果之比較 150 5.4 雙擺實驗中荷重計軸力偏心效應所造成之水平剪力量測誤差 151 5.5 DPFPI雙擺支承實驗與理論結果之比較 151 5.5.1 水平單向運動之比較 152 5.5.2 水平雙向運動之比較 152 5.5.3 減振效果之比較 153 5.6 曲面效應對隔震系統垂直加速度反應之影響探討 154 5.7 小結 154 第6章 各類DSIVC隔震系統之減震效能比較 246 6.1 DSIVC隔震支承設計法 246 6.1.1 結合傳統公式之設計法 246 6.1.2 變曲性能設計法 250 6.2 雙擺變曲DPFPI與雙擺定曲DFPI隔震系統之隔震性能比較 251 第7章 結論與建議 277 7.1 結論 277 7.2 建議 279 參考文獻 280

    1.Agrawal A. K., Xu Z., He W. L. (2006) “Ground motion pulse-based active control of a linear base-isolated benchmark building.” Structural Control & Health Monitoring, 13(2-3): 792-808.
    2.Bao Y., Becker T. C., Hamaguchi H. (2017) “Failure of double friction pendulum bearings under pulse-type motions.” Earthquake Engineering & Structural Dynamics, 46: 715–732.
    3.Chung L.L., Yang Y.C., Chen H.M., Lu L. Y. (2009) “Dynamic behavior of nonlinear rolling isolation system.” Structural Control and Health Monitoring, 16(1): 32-54.
    4.Faramarz K and Montazar R (2010) “Seismic response of double concave friction pendulum base-isolated structures considering vertical component of earthquake.” Advances in Structural Engineering, 13:1-13.
    5.Fenz D M and Constantinou M C (2006) “Behaviour of the double concave Friction Pendulum bearing.” Earthquake Engineering and Structural Dynamics Vol.35 1403-1424
    6.Fenz D. M., Constantinou M. C. (2008a) “Spherical sliding isolation bearings with adaptive behavior: Theory.” Earthquake Engineering & Structural Dynamics, 37: 163–183.
    7.Fenz D. M., Constantinou M. C. (2008b) ”Spherical sliding isolation bearings with adaptive behavior: Experimental verification.” Earthquake Engineering & Structural Dynamics, 37: 185–205.
    8.Jangid R.S,(2004), “Optimum friction pendulum system for near-fault motions.” Engineering Structures,Vol.27,No.3,349-359
    9.Krishnamoorthy A. (2011) “Variable curvature pendulum isolator and viscous fluid damper for seismic isolation of structures.” Journal of Vibration & Control, 17(12): 1779–1790.
    10.Krishnamoorthy A. (2015) “Seismic Control of Continuous Bridges Using Variable Radius Friction Pendulum Systems and Viscous Fluid Dampers.” International Journal of Acoustics & Vibration, 20(1): 24-35.
    11.Kim Y. S., Yun C. B. (2007) “Seismic response characteristics of bridges using double concave friction pendulum bearings with tri-linear behavior.” Engineering Structures, 29: 3082–3093.
    12.Lee T. Y. and Kawashima K. (2005) “Control of seismic-excited nonlinear isolated bridges with variable viscous dampers.” Journal of Earthquake Engineering, JSCE, 28(114)
    13.Lin P. Y., P. N. Roschke, C. H. Loh (2007) “Hybrid base-isolation with magnetorheological damper and fuzzy control.” Structural Control and Health Monitoring, 14(3): 384-405.
    14.Lin T. K., Lu L. Y., Chang H. (2015) “Fuzzy logic control of a stiffness-adaptable seismic isolation system.” Structural Control and Health Monitoring, 22(1): 177-195.
    15.Lu,L.Y., M.H.Shih, C.Y.Wu (2004), “Near-Fault Seismic Isolation Using Sliding Bearings with Variable Curvatures ,Proceedings of the 13th World Conference on Earthquake Engineering”, August 1-6, Vancouver, BC, Canada, Paper no. 3264.
    16.Lu L. Y. and Lin G. L. (2009a) “A theoretical study on piezoelectric smart isolation system for seismic protection of equipment in near-fault areas” Journal of Intelligent Material Systems & Structures, 20(2): 217-232.
    17.Lu L. Y. and Lin G. L. (2009b) “Improvement of near-fault seismic isolation using a resettable variable stiffness damper.” Engineering Structures, 31(9): 2097-2114.
    18.Lu L. Y., Lin G. L., Lin C. C. (2011a) “Absolute-energy-based active control strategies for linear seismic isolation systems.” Structural Control & Health Monitoring, 18(3):321-40.
    19.Lu L. Y., Lin G. L., C. Y. Lin (2011b) “Experimental verification of a piezoelectric smart isolation system.” Structural Control & Health Monitoring, 18(8): 869-889.
    20.Lu, L. Y., T. Y. Lee, S. W. Yeh (2011c) “Theory and experimental study for sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627.
    21.Lu L. Y., Chu S. Y., Yeh S. W., Chung L. L. (2012) “Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems.” Journal of Sound and Vibration, 331(4): 767-784.
    22.Lu L. Y., Hsu C. C. (2013a) “Experimental study of variable-frequency rocking bearings for seismic isolation.” Engineering Structures, 46(1): 116-129.
    23.Lu, L. Y., T. Y. Lee, S. Y. Juang, S. W. Yeh (2013b) “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982
    24.Murnal P. and Sinha R. (2002) “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, 128(7): 870-880.
    25.Murnal P. and Sinha R. (2004a) “Aseismic design of structure–equipment systems using variable frequency pendulum isolator.” Nuclear Engineering & Design, 231: 129–139.
    26.Murnal P. and Sinha R. (2004b) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, 130(7): 1041-1054.
    27.Naeim, F. and J. M. Kelly (1999) “Design of Seismic Isolated Structures, Chapter 4.” John Wiley & Sons, Inc., New York.
    28.Narasimhan, S. and S. Nagarajaiahb (2005) “A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems.” Engineering Structures, Vol. 27, pp. 514-523.
    29.Pranesh, M. and R. Sinha (2002) ,”Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.”Journal of Structural Engineering, 128, 870.
    30.Pranesh, M. and R. Sinha (2004a) “Behavior of Torsionally Coupled Structures with Variable Frequency Pendulum Isolator.”Journal of Structural Engineering, 130, 1041.
    31.Pranesh,M. and R. Sinha (2004b) ”Aseismic design of structure-equipment systems using variable frequency pendulum isolator”, Nuclear Engineering and Design, v 231, n 2, June, 2004, p 129-139
    32.Panchal V. R. and Jangid R. S. (2008a) “Variable friction pendulum system for near-fault ground motions.” Structural Control & Health Monitoring, 15: 568–584.
    33.Panchal V. R. and Jangid R. S. (2008b) “Seismic behavior of variable frequency pendulum isolator.” Earthquake Engineering & Engineering Vibration, 7(2): 193-205.
    34.Panchal V R and Jangid R S (2009) “Seismic Response of Structures with Variable Friction Pendulum System.” Journal of Earthquake Engineering Vol.13,No.2,193-216
    35.Panchal V. R., Jangid R. S., Soni D. P., Mistry B. B. (2010) “Response of the double variable frequency pendulum isolator under triaxial ground excitations.” Journal of Earthquake Engineering, 14: 527–558.
    36.Panchal V. R. and Jangid R. S. (2012) “Behaviour of liquid storage tanks with VCFPI under near-fault ground motions.” Structure & Infrastructure Engineering, 8(1): 70-88.
    37.Ponzo F. C., Cesare A. D., Leccese G., Nigro D. (2017) ”Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems.” Earthquake Engineering & Structural Dynamics.
    38.Soni D. P., Mistry B. B., Panchal V.R. (2010) “Behaviour of asymmetric building with double variable frequency pendulum isolator.” Structural Engineering & Mechanics, 34(1): 61-84.
    39.Soni D. P., Mistry B. B., Jangid R. S., Panchal V. R. (2011a) ”Seismic response of the double variable frequency pendulum isolator.” Structural Control & Health Monitoring, 18: 450-470.
    40.Soni D. P., Mistry B. B., Panchal V. R. (2011b) “Double variable frequency pendulum isolator for seismic isolation of liquid storage tanks.” Nuclear Engineering & Design, 241: 700-713.
    41.Tsai C. S., Chiang T. C., Chen B. J. (2003) “Finite element formulations and theoretical study for variable curvature friction pendulum system.” Engineering Structures, 25: 1719–1730.
    42.Van Engelen N.C., Tait M.J., Konstantinidis D. (2012) “Horizontal behavior of stable unbonded fiber reinforced elastomeric isolators (SU-FREIs) with holes.” The 15th World Conference on Earthquake Engineering, Sept. 24 -28, Lisbon, Portugal.
    43.Victor A. Z., Stanley L. (2000) ”Seismic Isolation for Strong ,Near-field Earthquake Motions” The 12th World Conference on Earthquake Engineering, No.0088.
    44.Wang, Y. P. and W. H. Liao (2000) ”Dynamic analysis of sliding structures with unsynchronized support motion,” Earthquake Engineering and Structural Dynamics, 29, 297-313
    45.Yang, Y. B., L.Y.Lu, J. D. Yau (2005) “Chapter 22: Structure and Equipment Isolation.”Vibration and Shock Handbook,edited by C. W. de Silva, CRC Press, Taylor & Francis Group
    46.王健 (2006), “變曲率滑動隔震防制近斷層震波之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元。
    47.王亮偉 (2016 a), “變曲率滑動隔震系統於三維震波作用下之實驗與理論研究” 國立成功大學碩士論文,7月,指導教授:盧煉元。
    48.王俊清,李姿瑩,盧煉元(2016 b)“應用多項式摩擦單擺支承於橋梁之性能設
    計” 中華民國第十三屆結構工程研討會暨第三屆地震工程研討會。
    49.周雲,鄧雪松,龔健(2012)“變曲率摩擦複擺隔震支承的簡化分析與數值仿真”工程力學,29(7):163-185
    50.吳政彥 (2004), “變曲率滑動隔震結構之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元。
    51.吳陽 (2018), “雙擺變曲率滑動隔震支承於雙向震波作用下之實驗與理論研究” 國立成功大學碩士論文,7月,指導教授:盧煉元。
    52.林禹辰 (2018), “摩擦單擺隔震結構受近斷層地震作用之振動台試驗與分析” 國立台灣大學碩士論文,7月,指導教授:黃尹男。
    53.范揚志(2015) “黏滯型隔震系統之隔震阻尼比最佳化設計公式及雙向變曲率型摩擦隔震系統理論與實驗研究”國立臺灣大學工學院土木工程學系,7月,指導教授:鍾立來。
    54.趙陽、翁大根、任曉崧、張瑞甫 (2012) “複摩擦擺支座應用於樓面隔震研究” 結構工程師,28(1): 73-81.
    55.盧煉元、鍾立來(1999) “國內外結構控制技術之進展”,土木技術(防災科技專題),四月號,第14期,81-95頁。
    56.盧煉元、施明祥、張婉妮(2003)“近斷層震波對滑動式隔震結構之影響評估”結構工程,十二月刊。
    57.盧煉元、施明祥、吳政彥(2004) “變曲率滑動隔震支承之遲滯行為理論與實驗研究”,第七屆結構工程研討會,桃園大溪,8月22-24日,論文編號:H19。
    58.盧煉元、施明祥、曾旭玟、吳政彥(2005a) “滑動隔震支承之研發與其受近斷層震波行為之實驗探討”,結構工程,第二十卷,第三期,29-59頁。
    59.盧煉元、吳政彥、葉弈麟 (2009) “圓錐形摩擦單擺支承之隔震應用研究”,結構工程,二十四卷,第二期,91-116頁。(NSC 94-2625-Z-327-004)
    60.蔡崇興、唐超倫、江子政 (2009) “足尺度鋼構架加裝複擺隔震器之地震模擬振動台試驗” 建築結構,39: 611-616.
    61.蔡諄昶 (2015), “具摩擦可變特性之滑動隔震系統於垂直震波作用下之實驗與分析” 高雄第一科技大學營建工程系碩士論文,7月,指導教授:盧煉元。

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE