| 研究生: |
吳昆翰 Wu, Kwun-Han |
|---|---|
| 論文名稱: |
高低聚物氮化碳複合結構之高效率水分解產氫機制探討 Oligomer-Polymer Carbon Nitride Composites as Effective Photocatalysts for Hydrogen Production from Water Decomposition |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 氮化碳 、氮化碳高分子 、氮化碳低聚物 、光催化 、分解水 、產氫 |
| 外文關鍵詞: | Carbon Nitride, Melem Oligomer, Oligomer and Polymer Composites, Water splitting, Hydrogen generation |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氣能源是最環保乾淨的替代能源之一,利用太陽光作能量來源達成光催化水分解產氫更可以實現能源永續的理想。石磨相氮化碳高分子是近七年來最受矚目的光觸媒之一,隨著研究程度逐漸深入,人們發現完全聚縮合的氮化碳並無可測量的光催化產氫效果,不完全聚縮合的氮化碳高分子卻擁有可觀的產氫能力,推測此效果與被視為缺陷的胺基有關,最新的研究更是利用特殊分離技術與合成方法將氮化碳低聚物從高分子的領域獨立分開討論,並且明確指出低聚物因為具有更多胺基的裸露而在動力學上更適合發生還原反應而產氫,然而氮化碳低聚物卻因為量子效應的關係使得能隙較同種類高分子來得更大,導致光催化效果在熱力學上不滿足。本研究開發出一個創意性十足的工法合成出氮化碳的高、低聚物複合材料,經過各項儀器的分析與檢驗之後,吾人大膽斷定此複合材料完美利用了低聚物更多胺基裸露的優點,並且保留了高分子本身在熱力學上可以吸收更長波長光的優勢。除此之外,複合結構的出現增加了光生電子電洞的分離率,分開的電子電洞各自被導出材料表面發生表面的反應。改質前後的樣品產氫效能可以相差十倍以上,對於氮化碳這項材料而言,本研究除了更進一步證明了胺基在產氫應用上的地位之外,同時也開創了另一個對學術界影響重大的研究方向。
The effectiveness of melon chain termination, amine groups, on photocatalytic activity attracted people to study the melem monomer and its condensates recently. Melem oligomers has been announced an active phase of “carbon nitride” owing to more amino-group exposure. Based on the advantages of exposure of amines, we here figure out a brand-new fashion to fabricate the composite of melem oligomer and carbon nitride polymer. The unique combination of distinct phases extended the optical absorption range of our material to longer wavelength, and highly improves its charge separation rate. The H2 evolution rate of this oligomer-polymer composite is 10 times higher than polymeric carbon nitride made from urea. This study re-emphasizes the crucial role of melem derivatives on photocatalysis.
參考文獻
1. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37, 1972.
2. 藤嶋昭、本多健一、 菊池真一,“工業化學”, 72, 108, 1969.
3. 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
4. S. S. Islam, “Semiconductor physics and devices” , New Delhi : Oxford University Press, 2006.
5. S. M. Sze, M. K. Lee ,“Semiconductor Devices: Physics and Technology, 3rd Edition”, Wiley, 2013.
6. R. L. Sproull, W. A. Phillips, “Modern Physics: The Quantum Physics of Atoms, Solids and Nuclei”, Wiley, 1980.
7. H. O. Finklea,”Semiconductor Electrode”;Elsevier, New York, 1988.
8. R. Memming, Semiconductor Electrochemistry;Wiley-VCH, New York, 2001
9. T. Leshuk, S. Linley, F. Gu, “HYDROGENATION PROCESSING OF TiO2 NANOPARTICLES”, Can. J. Chem. Eng. 91, 799, 2013.
10. A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 108, 1, 1997.
11. A. Kudo, H. Kato, I. Tsuji,”Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett. 33, 1534, 2004.
12. A. Kudo, Photocatalyst materials for water splitting , Catal. Surv. Asia, 31, 7, 2003.
13. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation, Chem. Lett. 33, 13, 48, 2004.
14. R. Abe, K. Sayama, H. Sugihara, Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I−, J. Phys. Chem. B. 109, 16052, 2005.
15. H. Pan, "Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting," Renewable and Sustainable Energy Reviews, vol. 57, pp. 584-601, 2016.
16. A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem Soc Rev, vol. 38, pp. 253-78, 2009.
17. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic materials: possibilities and challenges," Adv Mater, vol. 24, pp. 229-51, Jan 10 2012.
18. A. Kudo, Development of photocatalyst materials for water splitting, Inter. J. Hydrogen Energy. 31, 197, 2006.
19. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production, J. Thomas, Catal. Today. 122, 51, 2007.
20. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts, J. Solid State Chem. 177, 4205, 2004.
21. N. Nian, C. C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination, Inter. J. Hydrogen Ener. 33, 2897, 2008.
22. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, Electrochemistry of Titanate(IV) Layered Oxides, J. Phys. Chem. B. 105, 10893, 2001.
23. H. Kato, A. kudo, Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K), J. Phys. Chem. B. 105, 4285, 2001.
24. K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”, J. Appl. Electrochem., 37, 765, 2007.
25. H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 78, 561, 2003.
26. M. Grätzel, Photoelectrochemical cells, Nature. 414, 338,2001.
27. A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chem. Phys., 339, 104, 2007.
28. R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 362, 441, 2002.
29. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator”, Chem. Phys. Lett., 452, 120, 2008.
30. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn., 80, 1004, 2007.
31. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 109, 20504, 2005.
32. K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 357, 206, 2009.
33. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 78, 555, 2003.
34. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 130, 7176, 2008.
35. X. Wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 457, 134, 2008.
36. A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, J. Chem. Soc., 94, 2929, 1998.
37. I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 44, 3565, 2005.
38. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, et al., "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts," Journal of Materials Chemistry, vol. 18, p. 4893, 2008.
39. K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, and K. Domen, "Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light," The Journal of Physical Chemistry C, vol. 113, pp. 4940-4947, 2009.
40. X. Wang, S. Blechert, and M. Antonietti, "Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis," ACS Catalysis, vol. 2, pp. 1596-1606, 2012.
41. Y. Wang, X. Wang, and M. Antonietti, "Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry," Angew Chem Int Ed Engl, vol. 51, pp. 68-89, Jan 2 2012.
42. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, "Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene," Angewandte Chemie International Edition, vol. 45, pp. 4467-4471, 2006.
43. B. V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, et al., "Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer," Chemistry, vol. 13, pp. 4969-80, 2007.
44. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, et al., "A metal-free polymeric photocatalyst for hydrogen production from water under visible light," Nat Mater, vol. 8, pp. 76-80, Jan 2009.
45. Y. Fu, J. Zhu, C. Hu, X. Wu, and X. Wang, "Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode," Nanoscale, vol. 6, pp. 12555-64, Nov 7 2014.
46. D. Gao, Q. Xu, J. Zhang, Z. Yang, M. Si, Z. Yan, et al., "Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets," Nanoscale, vol. 6, pp. 2577-81, Mar 7 2014.
47. J. Xu, T. J. Brenner, L. Chabanne, D. Neher, M. Antonietti, and M. Shalom, "Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with V(OC) exceeding 1 V," J Am Chem Soc, vol. 136, pp. 13486-9, 2014.
48. M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei, J. Li, et al., "Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets," Nat Commun, vol. 5, p. 4284, 2014.
49. F. Zhao, H. Cheng, Y. Hu, L. Song, Z. Zhang, L. Jiang, et al., "Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing," Sci Rep, vol. 4, p. 5882, 2014.
50. L. Wang, F. Zhao, Q. Han, C. Hu, L. Lv, N. Chen, et al., "Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses," Nanoscale, vol. 7, pp. 9694-702, 2015.
51. G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, et al., "Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator," Nat Commun, vol. 6, p. 7258, 2015.
52. Z. Song, T. Lin, L. Lin, S. Lin, F. Fu, X. Wang, et al., "Invisible Security Ink Based on Water-Soluble Graphitic Carbon Nitride Quantum Dots," Angew Chem Int Ed Engl, vol. 55, pp. 2773-7, 2016.
53. F. Fina, S. K. Callear, G. M. Carins, and J. T. S. Irvine, "Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction," Chemistry of Materials, vol. 27, pp. 2612-2618, 2015.
54. V. W. Lau, M. B. Mesch, V. Duppel, V. Blum, J. Senker, and B. V. Lotsch, "Low-molecular-weight carbon nitrides for solar hydrogen evolution," J Am Chem Soc, vol. 137, pp. 1064-72, 2015.
55. G. A. Meek, A. D. Baczewski, D. J. Little, and B. G. Levine, "Polaronic Relaxation by Three-Electron Bond Formation in Graphitic Carbon Nitrides," The Journal of Physical Chemistry C, vol. 118, pp. 4023-4032, 2014.
56. Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, and X. Wang, "Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants," Phys Chem Chem Phys, vol. 14, pp. 1455-62, 2012.
57. Z. Lin and X. Wang, "Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis," Angewandte Chemie International Edition, vol. 52, pp. 1735-1738, 2013.
58. J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, et al., "Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis," Energy & Environmental Science, vol. 4, pp. 675-678, 2011.
59. J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, and Y. Chen, "A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity," Chemical Communications, vol. 48, pp. 12017-12019, 2012.
60. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, and X. Wang, "Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution," Advanced Materials, vol. 26, pp. 805-809, 2014.
61. Y. Zhang, T. Mori, J. Ye, and M. Antonietti, "Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation," Journal of the American Chemical Society, vol. 132, pp. 6294-6295, 2010.
62. X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, "Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light," Journal of the American Chemical Society, vol. 131, pp. 11658-11659, 2009.
63. P. Niu, G. Liu, and H.-M. Cheng, "Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride," The Journal of Physical Chemistry C, vol. 116, pp. 11013-11018, 2012.
64. P. Niu, L. C. Yin, Y. Q. Yang, G. Liu, and H. M. Cheng, "Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies," Adv Mater, vol. 26, pp. 8046-52, 2014.
65. Y. Kang, Y. Yang, L. C. Yin, X. Kang, G. Liu, and H. M. Cheng, "An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation," Adv Mater, vol. 27, pp. 4572-7, 2015.
66. M. Zhang and X. Wang, "Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution," Energy & Environmental Science, vol. 7, p. 1902, 2014.
67. J. Zhang, Y. Chen, and X. Wang, "Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications," Energy Environ. Sci., vol. 8, pp. 3092-3108, 2015.
68. J. Zhang, F. Guo, and X. Wang, "An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures," Advanced Functional Materials, vol. 23, pp. 3008-3014, 2013.
69. H. Yan, "Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light," Chemical Communications, vol. 48, pp. 3430-3432, 2012.
70. Z. Lin and X. Wang, "Ionic Liquid Promoted Synthesis of Conjugated Carbon Nitride Photocatalysts from Urea," ChemSusChem, vol. 7, pp. 1547-1550, 2014.
71. Y. Zhang, J. Liu, G. Wu, and W. Chen, "Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production," Nanoscale, vol. 4, pp. 5300-5303, 2012.
72. Y.-S. Jun, J. Park, S. U. Lee, A. Thomas, W. H. Hong, and G. D. Stucky, "Three-Dimensional Macroscopic Assemblies of Low-Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution," Angewandte Chemie International Edition, vol. 52, pp. 11083-11087, 2013.
73. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, et al., "Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light," Advanced Materials, vol. 25, pp. 2452-2456, 2013.
74. Q. Han, F. Zhao, C. Hu, L. Lv, Z. Zhang, N. Chen, et al., "Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting," Nano Research, vol. 8, pp. 1718-1728, 2015.
75. J. Xu, L. Zhang, R. Shi, and Y. Zhu, "Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis," Journal of Materials Chemistry A, vol. 1, pp. 14766-14772, 2013.
76. P. Niu, L. Zhang, G. Liu, and H.-M. Cheng, "Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities," Advanced Functional Materials, vol. 22, pp. 4763-4770, 2012.
77. K. Maeda, N. Sakamoto, T. Ikeda, H. Ohtsuka, A. Xiong, D. Lu, et al., "Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light," Chemistry, vol. 16, pp. 7750-9, 2010.
78. G. Zhang, S. Zang, and X. Wang, "Layered Co(OH)2 Deposited Polymeric Carbon Nitrides for Photocatalytic Water Oxidation," ACS Catalysis, vol. 5, pp. 941-947, 2015.
79. F. Jiao and H. Frei, "Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts," Angewandte Chemie International Edition, vol. 48, pp. 1841-1844, 2009.
80. G. Zhang, Z.-A. Lan, L. Lin, S. Lin, and X. Wang, "Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents," Chemical Science, vol. 7, pp. 3062-3066, 2016.
81. Q. Xiang, J. Yu, and M. Jaroniec, "Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites," The Journal of Physical Chemistry C, vol. 115, pp. 7355-7363, 2011.
82. Y. Wang, J. Hong, W. Zhang, and R. Xu, "Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization," Catalysis Science & Technology, vol. 3, pp. 1703-1711, 2013.
83. J. Liu and M. Antonietti, "Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates," Energy & Environmental Science, vol. 6, p. 1486, 2013.
84. Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, et al., "Dissolution and liquid crystals phase of 2D polymeric carbon nitride," J Am Chem Soc, vol. 137, pp. 2179-82, 2015.
85. J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, "Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity," Journal of Materials Chemistry, vol. 21, p. 14398, 2011.
86. Y. Chen, B. Wang, S. Lin, Y. Zhang, and X. Wang, "Activation of n → π* Transitions in Two-Dimensional Conjugated Polymers for Visible Light Photocatalysis," The Journal of Physical Chemistry C, vol. 118, pp. 29981-29989, 2014.
87. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, "Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies," Journal of the American Chemical Society, vol. 125, pp. 10288-10300, 2003.
88. H. Kato, K. Asakura, and A. Kudo, "Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure," Journal of the American Chemical Society, vol. 125, pp. 3082-3089, 2003.
89. B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed”, Prentice Hall, 2001.
90. M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 109, 8673, 2005.
91. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-Ray photoelectronspectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
92. P. Larkin,”Infrared and Raman spectroscopy: principles and special interpretation,” Elsevier, 2010
93. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, and E. Iglesia, "Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures," The Journal of Physical Chemistry B, vol. 103, pp. 630-640, 1999.
94. Kubelka, Munk, “The Kubelka-Munk Theory of Reflectance,” Zeit. Für Tekn. Physik, 12, p593, 1931.
95. M. J. Bojdys, "On new allotropes and nanostructures of carbon nitrides," Ph.D. Dissertation, Universitätsbibliothek Potsdam & Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany, 2009.
96. J. W. S. Hearle, J. T. Sparrow and P. M. Cross,” The use of the scanning electron microscope,” 1972.
97. D. Williams, and C. B. Carter, “Transmission Electron Microscopy. 1 – Basics,” ISBN 0-306-45324-X, 1996
98. 葉德夫,”不同氧化程度石墨烯光觸媒由水產氫及氧之研究,”國立成功大學化學工程系碩士論文, 2011
99. K. Gelderman, L. Lee, and S. W. Donne, "Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation," Journal of Chemical Education, vol. 84, p. 685, 2007.
100. R. Beranek, "(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials," Advances in Physical Chemistry, vol. 2016, p. 2, 2016.
101. X. Tang, Q. Tay, Z. Chen, Y. Chen, G. K. L. Goh, and J. Xue, "CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production," Journal of Materials Chemistry A, vol. 1, pp. 6359-6365, 2013.
102. S. Liu, H. Sun, K. O'Donnell, H. M. Ang, M. O. Tade, and S. Wang, "Metal-free melem/g-C3N4 hybrid photocatalysts for water treatment," J Colloid Interface Sci, vol. 464, pp. 10-7, 2016.
103. Y.-S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, and A. Thomas, "From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres," Advanced Functional Materials, vol. 23, pp. 3661-3667, 2013.
104. S. J. Makowski, P. Kostler, and W. Schnick, "Formation of a hydrogen-bonded heptazine framework by self-assembly of melem into a hexagonal channel structure," Chemistry, vol. 18, pp. 3248-57, 2012.
105. B. Zhu, P. Xia, W. Ho, and J. Yu, "Isoelectric point and adsorption activity of porous g-C3N4," Applied Surface Science, vol. 344, pp. 188-195, 2015.
106. D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, et al., "Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride," Angewandte Chemie International Edition, vol. 53, pp. 9240-9245, 2014.
107. A. Schwarzer, T. Saplinova, and E. Kroke, "Tri-s-triazines (s-heptazines)—From a “mystery molecule” to industrially relevant carbon nitride materials," Coordination Chemistry Reviews, vol. 257, pp. 2032-2062, 2013.
108. J. Zhang, M. Zhang, L. Lin, and X. Wang, "Sol processing of conjugated carbon nitride powders for thin-film fabrication," Angew Chem Int Ed Engl, vol. 54, pp. 6297-301, 2015.
109. S. Melissen, T. Le Bahers, S. N. Steinmann, and P. Sautet, "Relationship between Carbon Nitride Structure and Exciton Binding Energies: A DFT Perspective," The Journal of Physical Chemistry C, vol. 119, pp. 25188-25196, 2015.