簡易檢索 / 詳目顯示

研究生: 莊景棋
Chuang, Ching-Chi
論文名稱: 以ITO電極發展電化學式毛細管電泳晶片於亞硝酸根之檢測
Development of Electrochemcial Chip-Based Capillary Electrophoresis for Nitrite Detection Using ITO Electrode
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 54
中文關鍵詞: 亞硝酸根電化學ITO電極PDDA毛細管電泳晶片
外文關鍵詞: ITO electrode, nitrite, microchip capillary electrophoresis, electrochemical detection, PDDA
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毛細管電泳晶片提供快速高量、自動化和微小化,可整合許多分析步驟的潛力,藉由電泳晶片,能夠量測許多疾病的指標物,並且目前已開始應用於臨床研究上。此研究的目的是以ITO電極發展電泳晶片,結合可微小化的電化學感測端,用於亞硝酸根檢測。亞硝酸根在生理上已被認定為重要的離子,許多研究發現,標定亞硝酸根的濃度可具有診斷的應用性,尤其在心血管疾病方面。研究中使用微機電製程,將蝕刻出的ITO電極,在顯微鏡下對準於PDMS管道的出口端,接著電沉積上白金分別做為工作與參考電極,即完成end channel模式的電泳晶片,並可藉著清洗電極以及更換新的PDMS而重複使用。影響亞硝酸根檢測的因素有分離電壓、電滲流力、注入樣本量與檢測電位,結果顯示,(1)每次修飾PDDA(Poly (diallyldimethylammoniumchloride))能讓電滲流力維持在-2~-2.5×10-4 cm2/sV,(2)使用負電壓與表面修飾能夠成功分離亞硝酸根,(3)+0.5 V(vs. Pt)能完全將表面的亞硝酸根反應,(4)以注入電場-300 V/cm注入6秒,能提供足夠的樣本量,(5)在-100 V/cm的分離電場下重複操作7次,亞硝酸根均出現於65秒附近,(6)量測10-100 M的亞硝酸根,線性相關係數為0.992。結果說明此一簡易的晶片能達到檢測10 M亞硝酸根的要求,儘管還需要降低100倍才能符合人體內的濃度範圍。

    Microchip capillary electrophoresis has potential to offer high-throughput, automation, miniaturization and integration with many analytical procedures. Microchip has been applied to clinical studies recently. With various designed microchip, we are able to detect biomarkers of diseases. The aim of this study is to develop a microchip capillary electrophoresis using ITO glass with miniaturized electrochemical detection for nitrite sensing. Nitrite has been considered as an important molecular in physiology. It has been shown that monitoring nitrite levels could have great potential for diagnostic purposes, especially in cardiovascular diseases. In this separation and detection system, ITO electrodes fabricated by lithography were aligned to an exist of separation channel (also called end channel mode) under a microscope. Then, ITO electrodes were deposited Pt as working and reference electrodes respectively. This system can be rebuilt easily with a new PDMS and Pt regeneration. Factors influencing the separation and detection, including separation field strength, electroosmotic flow, injection volume and detection potential were studied. Results showed that (1) Coating with PDDA after each use supported a reverse EOF (cathode to anode) which varied from -2 to -3×10-4 cm2/sV. (2) Nitrite was sensitively detected with surface modification under negative field strength. (3) When the detection potential exceeded +0.5V, nitrite was oxidized thoroughly. (4) The injection volume was sufficient under injection field strength -300 V/cm and injection time 6 sec. (5) The migration time was 65 sec under separation field strength -100 V/cm. No significant variation was noticed after 7 runs while the channel was recoated each time. (6) The calibration curve was linear for nitrite over concentration range 10-100 M, with coefficient 0.992. The results demonstrate that ITO microchip with end channel mode can obtain good performance easily although it is necessary to increase the sensitivity by more than a factor of 100 for clinical application.

    摘要....................................................................................................................I Abstract.............................................................................................................II 目錄..................................................................................................................III 表目錄...............................................................................................................V 圖目錄..............................................................................................................VI 第一章 序論......................................................................................................1 1.1 研究背景...........................................................................................1 1.2 亞硝酸根...........................................................................................2 1.2.1 亞硝酸根與一氧化氮................................................................2 1.2.2 亞硝酸根的濃度評估................................................................3 1.3 亞硝酸根檢測方法...........................................................................4 1.3.1 分光光度法、螢光光度法........................................................4 1.3.2 流動注入分析法、高效能液相層析........................................5 1.3.3 生物感測器................................................................................7 1.4 毛細管電泳晶片檢測亞硝酸根.......................................................9 1.5 毛細管電泳晶片原理.....................................................................11 1.5.1電壓注入法...............................................................................11 1.5.2 分離效率..................................................................................13 1.5.3 電滲流力與電泳力..................................................................15 1.5.4 電化學偵測端..........................................................................18 1.5.5 負價離子檢測..........................................................................19 1.6 研究動機與策略.............................................................................22 第二章 實驗材料與方法................................................................................23 2.1 研究設備與藥品配製.....................................................................23 2.2 毛細管電泳晶片製作.....................................................................25 2.2.1 電極製程..................................................................................25 2.2.2 微管道製作..............................................................................26 2.2.3 白金電極電鍍..........................................................................29 2.2.4 晶片接合..................................................................................29 2.3 系統組合與量測步驟.....................................................................30 2.3.1 操作介面..................................................................................31 2.3.2 電壓操控模式..........................................................................31 2.3.3 電化學偵測法..........................................................................32 2.3.4 電滲流與電泳電流量測..........................................................32 第三章 結果與討論........................................................................................34 3.1 晶片中的電極.................................................................................34 3.1.1 電極材質比較..........................................................................34 3.1.2 ITO電鍍白金.............................................................................36 3.1.3 ITO電極對晶片結合的影響....................................................38 3.2 實驗參數評估.................................................................................39 3.2.1 樣本分離電壓的影響..............................................................39 3.2.2 電滲流力的影響......................................................................42 3.3 亞硝酸根偵測...............................................................................43 3.3.1 偵測亞硝酸根電位的選擇......................................................43 3.3.2亞硝酸根電泳圖譜...................................................................45 3.3.3 亞硝酸根檢量線......................................................................48 第四章 結論與展望........................................................................................49 參考文獻..........................................................................................................50

    [1] C. Nathan, “Nitric oxide as a secretory product of mammalian cells”, The FASEB Journal, 6 (1992) 3051-3064
    [2] X. Ye, “Detection of nitric oxide in single cells”, The Analyst, 133 (2008) 423-433
    [3] S. F.Y. Li, L. J. Kricka, ”Clinical Analysis by microchip capillary electrophoresis”, Clinical Chemistry, 52 (2006) 37-45
    [4] P. Vallance, N. Chan, “Endothelial function and nitric oxide: clinical relevance”, Heart, 85 (2001) 342-350
    [5] A. Dejam, C. J. Hunter, A. N. Schechter, M. T. Gladwin, “Emerging role of nitrite in human biology“, Blood Cells, Molecules, and Diseases, 32 (2004) 423-429
    [6] N. S. Bryan, “Nitrite in nitric oxide biology: cause or consequence? A systems-based review”, Free Radical Biology & Medicine, 41 (2006) 691-697
    [7] W. S. Jobgen, S. C. Jobgen, H. Li, C. J. Meininger, G. Wu, “Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography”, Journal of Chromatography B, 851 (2007) 71-82
    [8] P. Kleinbongard, A. Dejam, T. Lauer, T. Rassaf, A. Schindler, O. Picker, T. Scheeren, A. Godecke, J. Schrader, R. Schulz, G. Heusch,G. A. Schaub,N. S. Bryan, M. Feelisch, M. Kelm, “Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals“, Free Radical Biology & Medicine, 35:7 (2003) 790-796
    [9] D. Tsikas, “Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research”, Journal of Chromatography B, 851 (2007) 51-70
    [10] M. M. Tarpey, D. A. Wink, M. B. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations”, American journal of physiology. Regulatory, integrative and comparative physiology, 286 (2004) R431-R444
    [11] M. Grau, U. B. H. Cotta, P. Brouzos, C. Drexhage, T Rassaf , T Lauer, A Dejam, M Kelm, P. Kleinbongard, “Recent methodological advances in the analysis of nitrite in the human circulation: Nitrite as a biochemical parameter of the l-arginine/NO pathway”, Journal of Chromatography B, 851 (2007) 106-123
    [12] S. D. Silva, S. Cosnier, M. G. Almeida, J. J.G. Moura, “An efficient poly(pyrrole-viologen)-nitrite reductase biosensor for the mediated detection of nitrite”, Electrochemistry Communications, 6 (2004) 404-408
    [13] Z. Dai, H. Bai, M. Hong, Y. Zhu, J. Bao, J. Shen, “A novel nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on CdS hollow nanospheres”, Biosensors and Bioelectronics, 23 (2008) 1869-1873
    [14] Z. Zhang, S. Xia, D. Leonard, N. Jaffrezic-Renault, J. Zhang, F. Bessueille, Y. Goepfert, X. Wang, L. Chen, Z. Zhu, J. Zhao, M. G. Almeida, C. M. Silveira, “A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane”, Biosensors and Bioelectronics, (2008) In Press
    [15] F. Bedioui, N. Villeneuveb, “Electrochemical nitric oxide sensors for biological samples-principle, selected examples and applications”, Electroanalysis, 15 (2003) 5-18
    [16] T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S. i. Wakida, E. Niki, “Simultaneous determination of nitrate and nitrite in biological fluids by capillary electrophoresis and preliminary study on their determination by microchip capillary electrophoresis”, Journal of Chromatography A, 1051 (2004) 185-191
    [17] T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi, Y. Yoshida, S. i. Wakida, E. Niki, “High-throughput nitric oxide assay in biological fluids using microchip capillary electrophoresis”, Journal of Chromatography A, 1109 (2006) 174-178
    [18] T. Miyado, S. i. Wakida, H. Aizawa, Y. Shibutani, T. Kanie, M. Katayama, K. Nose, A. Shimouchi, “High-throughput assay of nitric oxide metabolites in human plasma without deproteinization by lab-on-a-chip electrophoresis using a zwitterionic additive”, Journal of Chromatography A, 1206 (2008) 41-44
    [19] L. Nyholm, “Electrochemical techniques for lab-on-a-chip applications”, The Analyst, 130 (2005) 599-605
    [20] R. K. Hanajiri, R. S. Martin, S. M. Lunte, ” Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection”, Analytical Chemistry, 74 (2002) 6370-6377
    [21] M. J. A. Shiddiky, M. S. Won, Y. B. Shim, “Simultaneous analysis of nitrate and nitrite in a microfluidic device with a Cu-complex-modified electrode”, Electrophoresis, 27 (2006) 4545-4554
    [22] S. D. Noblitt, C. S. Henry, ” Improving the compatibility of contact conductivity detection with microchip electrophoresis using a bubble cell”, Analytical Chemistry, 80 (2008) 7624-7630
    [23] M. Blas, N. Delaunay, J. L. Rocca, “Comparative study of floating and dynamic injection modes in electrokinetic separative microsystems”, Electrophoresis, 28 (2007) 4629-4637
    [24] M. Blas, N. Delaunay, J. L. Rocca, “Electrokinetic-based injection modes for separative microsystems”, Electrophoresis, 29 (2008) 20-32
    [25] Y. Liu, J. A. Vickers, C. S. Henry, “Simple and sensitive electrode design for microchip electrophoresis/electrochemistry”, Analytical Chemistry, 76 (2004) 1513-1517
    [26] L. M. Fu, C. H. Lin, “Numerical analysis and experimental estimation of a low-leakage injection technique for capillary electrophoresis”, Analytical Chemistry, 75 (2003) 5790-5796
    [27] J. P. Alarie, S. C. Jacobson, J. M. Ramsey, “Electrophoretic injection bias in a microchip valving scheme”, Electrophoresis, 22 (2001) 312-317
    [28] M. Gong, K. R. Wehmeyer, A. M. Stalcup, P. A. Limbach, W. R. Heineman, “Study of injection bias in a simple hydrodynamic injection in microchip CE”, Electrophoresis, 28 (2007) 1564-1571
    [29] Y. H. Lin, G.. B. Lee, C. W. Li, G.. R. Huang, S. H. Chen, “Flow-through sampling for electrophoresis-based microfluidic chips using hydrodynamic pumping”, Journal of Chromatography A, 937 (2001) 115-125
    [30] C. C. Lin, C. C. Chen, C. E. Lin, S. H. Chen, “Microchip electrophoresis with hydrodynamic injection and waste-removing function for quantitative analysis“, Journal of Chromatography A, 1051 (2004) 69-74
    [31] F. Foret, L, Krivankova, P. Bocek, “Capillary zone electrophoresis”, John Wiley & Sons, (1993) pp.37-94
    [32] C. H. Tsai, C. H. Tai, L. M. Fu, F. B. Wu, “Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems”, Journal of Micromechanics and Microengineering, 15 (2005) 377-385
    [33] C. S. Henry, eds., “Microchip capillary electrophoresis: methods and protocols”, Humana Press, (2006)
    [34] W. Wang, F. Zhou, L. Zhao, J. R.Zhang, J. J. Zhu, “Measurement of electroosmotic flow in capillary and microchip electrophoresis”, Journal of Chromatography A, 1170 (2007) 1–8
    [35] F. M. Matysik, “Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis”, Microchimica Acta, 160 (2008) 1-14
    [36] P. Ertl, C. A. Emrich, P. Singhal, R. A. Mathies, “Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system”, Analytical Chemistry, 76 (2004) 3749-3755
    [37] Y. Wang, H. Chen, Q. He, S. A. Soper, “A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel
    amperometric detection”, Electrophoresis, 29 (2008) 1881-1888
    [38] C. C. J. Lai, C. H. Chen, F. H. Ko, “In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler“, Journal of Chromatography A, 1023 (2004) 143–150
    [39] N. A. Lacher, S. M. Lunte, R. S. Martin, “Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device”, Analytical Chemistry, 76 (2004) 2482-2491
    [40] J. A. Vickers, C. S. Henry, “Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection”, Electrophoresis, 26 (2005) 4641–4647
    [41] C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin, H. C. Chang, “Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection”, Analytical Chemistry, 75 (2003) 947–952
    [42] J. Yan, X. Yang, E. Wang, “Electrochemical detection of anions on an electrophoresis microchip with integrated silver electrode”, Electroanalysis, 17 (2005) 1222-1226
    [43] M. J. A. Shiddiky, H. Park, Y. B. Shim, “Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection”, Analytical Chemistry, 78 (2006) 6809-6817
    [44] 關福玉, “表面活性劑在高效毛管電泳中的作用”, Chinese Journal of Chromatography, 13 (1995) 30-37
    [45] Q. L. Zhang, J. J. Xu, H. Z. Lian, X. Y. Li, H. Y. Chen, “Polycation coating poly(dimethylsiloxane) capillary electrophoresis microchip for rapid separation of ascorbic acid and uric acid”, Analytical and Bioanalytical Chemistry, 387 (2007) 2699–2704
    [46] B. Wang, Z. A. Kanji, E. Dodwell, J. H. Horton, R. D. Oleschuk, “Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications”, Electrophoresis, 24 (2003) 1442–1450
    [47] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”, Analytical Chemistry, 70 (1998) 4974-4984
    [48] http://mems.gatech.edu/msmawebsite/members/processes/processes_files/SU8/Data%20Sheet%202-25.pdf
    [49] 鄭麒宏, 毛細管電泳晶片穩定度促進與其結合安培法對於神經傳導物質的檢測探討, 國立成功大學醫學工程研究所碩士論文, 2006
    [50] 陳怡芳, 可供一氧化氮檢測的毛細管電泳電化學晶片之研發, 國立成功大學醫學工程研究所碩士論文, 2005
    [51] A. Persat, T. Zangle, J. Posner, J. Santiago, “On-chip electrophoresis devices: do’s, don’t’s and dooms”, Lab on a Chip Chips & Tips, 26 March (2007)
    [52] A. J. Bard, L. R. Faulkner, “Electrochemical methods fundamentals and applications 2nd”, John Wiley & Sons, (2001) pp.641
    [53] D. C. Chen, F. L. Hsu, D. Z. Zhan, C. H. Chen, “Palladium film decoupler for amperometric detection in electrophoresis chips“, Analytical Chemistry, 73 (2001) 758-762
    [54] J. J. Whalen III, J. D. Weiland, P. C. Searson, “Electrochemical deposition of platinum from aqueous ammonium hexachloroplatinate solution”, Journal of The Electrochemical Society, 152 (11) (2005) C738-C743
    [55] M. L. Kovarik, M. W. Li, R. S. Martin, “Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry”, Electrophoresis, 26 (2005) 202-210
    [56] K. W. Lin, Y. K. Huang, H. L. Su, Y. Z. Hsieh, “In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis“, Analytica Chimica Acta, 619 (2008) 115-121
    [57] C. H. Lin, R. J. Yang, C. H. Tai, C. Y. Lee, L. M. Fu, ” Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips”, Journal of Micromechanics and Microengineering, 14 (2004) 639-646
    [58] M. B. Amran, M. D. Lakkis, F. Lagarde, M. J. F. Leroy, J. F. Lopez-Sanchez, G. Ranret, “Separation of bromide, bromate, iodide, iodate, nitrite, nitrate and selenite anions by capillary zone electrophoresis”, Fresenius' Journal of Analytical Chemistry, 345 (1993) 420-423
    [59] J. C. Hoogvliet, W. P. van Bennekom, “Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response”, Electrochimica Acta, 47 (2001) 599–611

    下載圖示 校內:2010-02-11公開
    校外:2011-02-11公開
    QR CODE