簡易檢索 / 詳目顯示

研究生: 林宗翰
Lin, Zhong-Han
論文名稱: 應用LRCM處理波浪輻射邊界問題
Applying LRCM to Deal with Radiation Boundary Condition of Wave Problems
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 91
中文關鍵詞: 輻射邊界緩坡方程式無網格法區域徑向基底函數配點法
外文關鍵詞: Radiation boundary condition, Mild-slope equation, Mesh-less numerical method, Local radial basis function collocation method
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用區域徑向基底函數配點法(LRCM)解析橢圓型態之緩坡方程式(MSE),用以模擬波浪大角度入射時之波場。本文使用之LRCM為無網格法,相較於傳統的數值方法,在高階輻射邊界的處理上較為簡單。本文將輻射邊界展開至三階,以處理波浪斜向入射之問題。此外,文中以不同的障礙物進行驗證計算,包括波浪通過垂直圓柱和淺水長波通過拋物線型潛灘,並與前人理論所推導之解析解進行比較,其結果顯示模式之預測值與解析解相互符合,特別是在波浪大角度入射的情況下,使用高階輻射邊界的結果與解析解呈現良好之一致性。

    The local radial basis function collocation method (LRCM) uses a multiquadric type radial basis function to simulate water wave propagation with oblique incidence. LRCM is a mesh-less numerical method and its applications to the high-order radiation boundary conditions are much simpler compared with the traditional numerical methods. In this study, the mild-slope equation (MSE) is used and the radiation boundary condition is expanded to the third-order approximation for solving the MSE. Two typical numerical cases, waves scattering around a vertical cylinder and shallow water waves propagating over a submerged shoal, are used to validate the present model. The numerical results for the third-order radiation boundary condition are in a better agreement with than those of the first-order and second-order radiation boundary conditions for large incident angle.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures VI List of Tables XI List of Acronyms XII List of Symbols XIII Chapter 1 Introduction 1 1.1 Problem Statement 1 1.2 Motivation 4 1.3 Literature Review 6 1.4 Contents of Thesis 10 Chapter 2 Numerical Model 11 2.1 Governing Equation 11 2.2 Radiation Boundary Conditions (RBCs) 12 Chapter 3 Local RBF Collocation Method 19 3.1 Radial Basis Function (RBF) 19 3.2 Local RBF Collocation Method (LRCM) 20 3.3 Operator on RBF 24 3.4 Example for LRCM 26 Chapter 4 Numerical Results 31 4.1 Waves scattering around a vertical cylinder 32 4.2 Shallow water waves propagating over a submerged shoal 50 Chapter 5 Conclusions 67 5.1 Conclusions 67 5.2 Suggestions 68 References 69 Appendix A. Derivation of MSE 73 Appendix B. Padé Approximation 77 Appendix C. Analytical solutions of waves scattering around a vertical cylinder 81 Appendix D. Analytical solutions of shallow water waves over a circular shoal 83 Appendix E. General solution for shallow water waves over a varying depth 87

    1. Behrendt, L., 1985. A Finite Element Model for Water Wave Diffraction: Including Boundary Absorption and Bottom Friction. Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark.
    2. Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18 (9), 509-517.
    3. Berkhoff, J.C.W., 1972. Computation of combined refraction-diffraction, 13th International Conference on Coastal Engineering, Vancouver pp. 471-490.
    4. Bettess, P., Zienkiewicz, O., 1977. Diffraction and refraction of surface waves using finite and infinite elements. International Journal for Numerical Methods in Engineering 11 (8), 1271-1290.
    5. Booij, N., 1981. Gravity waves on water with non-uniform depth and current. Technische Hogeschool Delft.
    6. Chamberlain, P., Porter, D., 1995. The modified mild-slope equation. Journal of Fluid Mechanics 291, 393-407.
    7. Chen, C.S., Ganesh, M., Golberg, M.A., Cheng, A.-D., 2002. Multilevel compact radial functions based computational schemes for some elliptic problems. Computers & Mathematics with Applications 43 (3), 359-378.
    8. Chen, H.S., Mei, C.C., 1974. Oscillations and wave forces in an offshore harbor: applications of hybrid finite element method to water-wave scattering. Dept. of Engineering, Massachusetts Institute of Technology.
    9. Dalrymple, R.A., Suh, K.D., Kirby, J.T., Chae, J.W., 1989. Models for very wide-angle water waves and wave diffraction. Part 2. Irregular bathymetry. Journal of Fluid Mechanics 201, 299-322.
    10. Duchon, J., 1977. Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Schempp, W., Zeller, K. (Eds.), Constructive Theory of Functions of Several Variables. Springer Berlin / Heidelberg, pp. 85-100.
    11. Fasshauer, G.E., 1996. Solving partial differential equations by collocation with radial basis functions, Proceedings of Chamonix. Citeseer, pp. 1-8.
    12. Hardy, R.L., 1971. Multiquadric equations of topography and other irregular surfaces. Journal of Geopphysical Research 76 (8), 1905-1915.
    13. Hon, Y., Schaback, R., Zhou, X., 2003. An adaptive greedy algorithm for solving large RBF collocation problems. Numerical Algorithms 32 (1), 13-25.
    14. Hsu, T.-W., Lan, Y.-J., Tsay, T.-K., Lin, K.-P., 2003. Second-order radiation boundary condition for water wave simulation with large angle incidence. Journal of engineering mechanics 129 (12), 1429-1438.
    15. Huang, C.-S., Lee, C.-F., Cheng, A.-D., 2007. Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Engineering Analysis with Boundary Elements 31 (7), 614-623.
    16. Huang, T.-Y., Hsiao, S.-C., Wu, N.-J., 2014. Nonlinear wave propagation and run-up generated by subaerial landslides modeled using meshless method. Computational Mechanics 53 (2), 203-214.
    17. Kansa, E., Hon, Y., 2000. Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Computers & Mathematics with Applications 39 (7), 123-137.
    18. Kansa, E.J., 1990a. Multiquadrics - A scattered data approximation scheme with applications to computational fluid-dynamics--I surface approximations and partial derivative estimates. Computers & Mathematics with Applications 19 (8-9), 127-145.
    19. Kansa, E.J., 1990b. Multiquadrics - A scattered data approximation scheme with applications to computational fluid-dynamics--II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications 19 (8-9), 147-161.
    20. Kim, J.W., Bai, K.J., 2004. A new complementary mild-slope equation. Journal of Fluid Mechanics 511, 25-40.
    21. Kirby, J.T., 1986a. Higher‐order approximations in the parabolic equation method for water waves. Journal of Geophysical Research: Oceans (1978–2012) 91 (C1), 933-952.
    22. Kirby, J.T., 1986b. Rational approximations in the parabolic equation method for water waves. Coastal Engineering 10 (4), 355-378.
    23. Kosec, G., Sarler, B., 2008. Local RBF collocation method for Darcy flow. Computer Modeling in Engineering and Sciences 25 (3), 197.
    24. Kosec, G., Založnik, M., Šarler, B., Combeau, H., 2011. A meshless approach towards solution of macrosegregation phenomena. Computers Materials and Continua 22 (2), 169.
    25. Kovacevic, I., Poredos, A., Sarler, B., 2003. Solving the Stefan problem with the radial basis function collocation method. Numerical Heat Transfer-Part B-Fundamentals 44 (6), 575.
    26. Lee, C.K., Liu, X., Fan, S.C., 2003. Local multiquadric approximation for solving boundary value problems. Computational Mechanics 30 (5), 396-409.
    27. Li, X.S., 2005. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31 (3), 302-325.
    28. Libre, N.A., Emdadi, A., Kansa, E.J., Rahimian, M., Shekarchi, M., 2008. A stabilized RBF collocation scheme for Neumann type boundary value problems. CMES: Computer Modeling in Engineering & Sciences 24 (1), 61-80.
    29. Liu, X., Liu, G., Tai, K., Lam, K., 2005. Radial point interpolation collocation method (RPICM) for partial differential equations. Computers & Mathematics with Applications 50 (8), 1425-1442.
    30. MacCamy, R., Fuchs, R., 1954. Wave forces on piles: A diffraction theory. DTIC Document.
    31. Mai-Duy, N., Tran-Cong, T., 2002. Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson's equations. Engineering Analysis with Boundary Elements 26 (2), 133-156.
    32. Mai-Duy, N., Tran-Cong, T., 2003. Indirect RBFN method with thin plate splines for numerical solution of differential equations. Computer Modeling in Engineering and Sciences 4 (1), 85-102.
    33. Mai‐Duy, N., Tran‐Cong, T., 2001. Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids 37 (1), 65-86.
    34. Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coastal Engineering 19 (1), 97-126.
    35. Mordane, S., Mangoub, G., Maroihi, K.L., Chagdali, M., 2004. A parabolic equation based on a rational quadratic approximation for surface gravity wave propagation. Coastal Engineering 50 (3), 85-95.
    36. Niu, X., Yu, X., 2011. Analytic solution of long wave propagation over a submerged hump. Coastal Engineering 58 (2), 143-150.
    37. Porter, D., Staziker, D., 1995. Extensions of the mild-slope equation. Journal of Fluid Mechanics 300, 367-382.
    38. Porter, R., Porter, D., 2003. Scattered and free waves over periodic beds. Journal of Fluid Mechanics 483, 129-163.
    39. Radder, A.C., 1979. On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics 95 (01), 159-176.
    40. Šarler, B., 2005. A radial basis function collocation approach in computational fluid dynamics. Computer Modelling in Engineering & Sciences 7, 185-193.
    41. Šarler, B., Perko, J., Chen, C.-S., 2004. Radial basis function collocation method solution of natural convection in porous media. International Journal of Numerical Methods for Heat & Fluid Flow 14 (2), 187-212.
    42. Šarler, B., Vertnik, R., 2006. Meshfree explicit local radial basis function collocation method for diffusion problems. Computers & Mathematics with Applications 51 (8), 1269-1282.
    43. Sommerfeld, A., Kuerti, G., 1964. Mechanics of deformable bodies. Academic Press New York.
    44. Spiegel, M.R., 1958. Applied Differential Equations. Prentice-Hall.
    45. Tsung, W.-S., Hsiao, S.-C., Huang, T.-Y., Wu, N.-J., 2013. Simulation of propagation and run-up of landslide-induced waves using meshless method. J. Coast. Res 65, 404-409.
    46. Wu, N.-J., Chang, K.-A., 2011. Simulation of free-surface waves in liquid sloshing using a domain-type meshless method. International Journal for Numerical Methods in Fluids 67 (3), 269-288.
    47. Yao, G., Kolibal, J., Chen, C.S., 2011. A localized approach for the method of approximate particular solutions. Computers & Mathematics with Applications 61 (9), 2376-2387.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE