| 研究生: |
紀坤岳 Chi, Kun-Yueh |
|---|---|
| 論文名稱: |
以高功率脈衝磁控濺鍍沉積類鑽碳薄膜與中空陰極電弧放電之研究 Deposition of Diamond-like Carbon Films by HiPIMS and Research of Hollow Cathode Arc Discharge |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 類鑽碳薄膜 、高功率脈衝磁控濺鍍(HiPIMS) 、中空陰極電弧放電 |
| 外文關鍵詞: | DLC films, HiPIMS, Hollow Cathode Discharge, Hollow Cathode Arc |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類鑽碳薄膜具有機械性質良好、耐磨耗、硬度高、表面平滑、以及耐腐蝕等特性,使其能適用在模具、刀具及光學領域上,目前已在工業界被廣泛的使用,而在硬度與耐磨耗的持續提升一直是被研究的重點。
本研究嘗試開發以下兩種不同的高解離率物理氣相沉積技術(IPVD),期望能製備出擁有高sp3含量、高硬度及耐磨耗之類鑽碳薄膜。
第一種技術為以高功率脈衝磁控濺鍍(High power impulse magnetron sputtering, HiPIMS)結合中空陰極磁控濺鍍(Hollow cathode magnetron)來使電漿解離率更往上提升,期望能以此沉積更高品質、細緻的類鑽碳薄膜,另外,並以一般的脈衝直流磁控濺鍍沉積薄膜作為對照組。由實驗結果可以看到,由於HiPIMS的高解離率使得其沉積出的類鑽碳薄膜較一般脈衝直流磁控濺鍍所沉積出來的薄膜更為細緻,且sp3含量較高;除此之外,在較低的壓力所沉積出來的類鑽碳薄膜品質也更好,因壓力高容易使鍍膜離子產生氣相聚合反應,使得薄膜結構鬆散,sp2含量較高。
第二種技術為結合中空陰極高電子使用率與傳統電弧放電之高離子能量及高解離率之優點,產生中空陰極電弧放電機制(hollow cathode arc, HAC),另外透過外加磁場來產生旋轉中空陰極電弧,期望能透過此機構設計來達到抑制微粒產生的效果並同時具有防止微粒到達基板的功能,解決傳統陰極電弧法當中需透過磁過濾系統來濾掉微粒而在沉積速率上作犧牲的缺點。惟本實驗目前仍處於現象觀察階段,鍍膜階段需等待機構進一步設計方能進行效果驗證,然而,在本實驗中已可觀察到弧根在中空陰極管中快速旋轉之現象,相信待機構設計完成,其鍍膜效果之進步指日可待。
In this study, two ionized physical vapor deposition (IPVD) techniques were developed in order to deposit diamond-like carbon (DLC) films with high sp3 ratio, high mechanical hardness and high wear resistance. One is the combination of high power impulse magne-tron sputtering (HiPIMS) and hollow cathode magnetron (HCM) with a view to further increasing the degree of ionization of plasma, while the other is spiral hollow cathode arc with the combination of hollow cathode arc (HCA) and supplementary magnetic fields for the purpose of removing microparticles which can be a big issue in traditional cathodic arc.
Scanning electron microscope (SEM) and Raman spectrum were used to examine the mi-crostructure and mechanical properties of the films deposited in the first technique while the second technique is still in the stage of plasma phenomena observation. In the first technique, the results showed that the DLC films deposited indeed has higher sp3 ratio and mechanical properties compared to the one with dc power supply. In the second technique, the phenomena of spiral effect of cathode spots has been successfully observed and de-veloped, however, whether the spiral effect can be helpful for the removing of microparti-cle while film deposition remains to be seen in the future experiments.
[1] 曾煥華, 電漿的世界. 台灣台北: 銀禾文化事業有限公司, 1987.
[2] 洪昭南, "電漿反應器," 化工技術, vol. 第三卷, no. 124, 第三期, 1995.
[3] B. Chapman, Glow Discharge Processes. New York, United State of America: John Wiley & Sons, Inc., 1980.
[4] J. Roth, "Industrial Plasma Engineering Volume 1 Principles. Bristol and Philadelphia," Institute of Physics publishing, 1995.
[5] 翁文毅, "電漿輔助化學氣相沈積法成長改質類鑽碳膜," 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2002.
[6] 陳國政, "以離子被覆法沉積具光致親水性奈米複合碳膜之研究," 碩士, 微機電系統工程研究所, 國立成功大學, 台南市, 2005.
[7] 陳俊欽, "類鑽碳奈米複合薄膜之研究," 博士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2004.
[8] D. P. Monaghan, D. G. Teer, K. C. Laing, I. Efeoglu, and R. D. Arnell, "Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering," Surface and Coatings Technology, vol. 59, no. 1, pp. 21-25, 1993/10/01/ 1993.
[9] H. Ichimura and A. Kawana, "High temperature oxidation of ion-plated CrN films," Journal of materials research, vol. 9, no. 1, pp. 151-155, 1994.
[10] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities," Surface and coatings technology, vol. 122, no. 2-3, pp. 290-293, 1999.
[11] 李志偉, "高功率脈衝磁控濺鍍技術介紹," 真空科技, vol. 30, no. 1, pp. 33-48, 2017.
[12] J. S. Colligon, "Energetic condensation: Processes, properties, and products," Journal of Vacuum Science & Technology A, vol. 13, no. 3, pp. 1649-1657, 1995.
[13] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin solid films, vol. 513, no. 1-2, pp. 1-24, 2006.
[14] J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, "High power impulse magnetron sputtering discharge," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 3, p. 030801, 2012.
[15] A. Anders, "Discharge physics of high power impulse magnetron sputtering," vol. 205, pp. S1-S9, 2011.
[16] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, vol. 204, no. 11, pp. 1661-1684, 2010.
[17] J. Alami, K. Sarakinos, G. Mark, and M. Wuttig, "On the deposition rate in a high power pulsed magnetron sputtering discharge," Applied physics letters, vol. 89, no. 15, p. 154104, 2006.
[18] A. Anders, J. Čapek, M. Hála, and L. Martinu, "The ‘recycling trap’: a generalized explanation of discharge runaway in high-power impulse magnetron sputtering," Journal of physics D: Applied physics, vol. 45, no. 1, p. 012003, 2011.
[19] A. Anders, "Deposition rates of high power impulse magnetron sputtering: Physics and economics," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 28, no. 4, pp. 783-790, 2010.
[20] J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, "On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering," Journal of Physics D: Applied Physics, vol. 42, no. 1, p. 015304, 2008.
[21] S. Konstantinidis, J. P. Dauchot, M. Ganciu, A. Ricard, and M. Hecq, "Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges," Journal of applied physics, vol. 99, no. 1, p. 013307, 2006.
[22] R. Pessoa, B. Sismanoglu, J. Amorim, G. Petraconi, and H. MACIEL, "Hollow cathode discharges: low and high-pressure operation," Gas Discharges, Fundamentals and Applications, 2007.
[23] H. Koch, L. J. Friedrich, V. Hinkel, F. Ludwig, B. Politt, and T. Schurig, "Hollow cathode discharge sputtering device for uniform large area thin film deposition," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, no. 4, pp. 2374-2377, 1991.
[24] C. M. Ferreira and J. L. Delcroix, "Theory of the hollow cathode arc," Journal of Applied Physics, vol. 49, no. 4, p. 2380, 1978.
[25] 郭有斌, "微中空陰極陣列常壓電漿與低溫成長碳奈米結構," 化學工程學系碩博士班, 國立成功大學, 2004年, 2004.
[26] P. F. Little and A. Von Engel, "The Hollow-Cathode Effect and the Theory of Glow Discharges," vol. 224, no. 1157, pp. 209-227, 1954, doi: 10.1098/rspa.1954.0152.
[27] G. Kirkman-Amemiya, H. Bauer, and M. Gundersen, "Analysis of the high current glow discharge occurring in the BLT and pseudospark switch," in Bull. Amer. Phys. Soc., 31st Plasma Phys. Meet., 1989.
[28] P. Choi, H. Chuaqui, J. Lunney, R. Reichle, A. J. Davies, and K. Mittag, "Plasma formation in a pseudospark discharge," IEEE Transactions on Plasma Science, vol. 17, no. 5, pp. 770-774, 1989.
[29] K. Frank and J. Christiansen, "The fundamentals of the pseudospark and its applications," vol. 17, no. 5, pp. 748-753, 1989.
[30] M. T. Ngo, K. H. Schoenbach, G. A. Gerdin, and J. H. Lee, "The temporal development of hollow cathode discharges," vol. 18, no. 3, pp. 669-676, 1990.
[31] L. Bárdoš, "Radio frequency hollow cathodes for the plasma processing technology," Surface and Coatings Technology, vol. 86-87, pp. 648-656, 1996.
[32] H. BaráNková, "The radio frequency hollow cathode plasma jet arc for the film deposition," vol. 14, no. 6, p. 3033, 1996.
[33] N. Baguer and A. Bogaerts, "Study of the sputtered Cu atoms and Cu[sup +] ions in a hollow cathode glow discharge using a hybrid model," vol. 98, no. 3, p. 033303, 2005.
[34] N. Baguer, A. Bogaerts, and R. Gijbels, "Role of the fast Ar atoms, Ar[sup +] ions, and metastable Ar atoms in a hollow cathode glow discharge: Study by a hybrid model," vol. 94, no. 4, p. 2212, 2003.
[35] B. Zimmermann, F. Fietzke, H. Klostermann, J. Lehmann, F. Munnik, and W. Möller, "High rate deposition of amorphous hydrogenated carbon films by hollow cathode arc PECVD," vol. 212, pp. 67-71, 2012.
[36] J. J. Cuomo, "Hollow-cathode-enhanced magnetron sputtering," vol. 4, no. 3, p. 393, 1986.
[37] 丁南宏, "真空技術與應用," ed: 行政院國家科學委員會, 2001.
[38] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. John Wiley & Sons, 2005.
[39] T. Takagi, "Ion–surface interactions during thin film deposition," vol. 2, no. 2, p. 382, 1984.
[40] N. Ahmed, "Ion plating technology: developments and applications," John Wiley & Sons, Inc., 1987, p. 171, 1987.
[41] P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, "Microstructural design of hard coatings," Progress in materials science, vol. 51, no. 8, pp. 1032-1114, 2006.
[42] H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew, 2012.
[43] W. D. Kingery, "Introduction to ceramics," 1976.
[44] J. Robertson, "Properties of diamond-like carbon," Surface and Coatings Technology, vol. 50, no. 3, pp. 185-203, 1992/02/06/ 1992.
[45] J. Robertson, "Diamond-like amorphous carbon," Materials Science and Engineering: R: Reports, vol. 37, no. 4, pp. 129-281, 2002/05/24/ 2002.
[46] C. De Martino, F. Demichelis, and A. Tagliaferro, "Determination of the sp3sp2 ratio in a-C:H films by infrared spectrometry analysis," Diamond and Related Materials, vol. 4, no. 10, pp. 1210-1215, 1995/09/01/ 1995.
[47] H. Liu and D. S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond and Related Materials, vol. 4, no. 10, pp. 1173-1188, 1995.
[48] J. C. Angus and C. C. Hayman, "Low-Pressure, Metastable Growth of Diamond and Diamondlike Phases," Science, vol. 241, no. 4868, p. 913, 1988.
[49] I. Garnev and V. Orlinov, "Evaluation and parametric modelling of abrasive wear resistance of ion-plated thin DLC films," Diamond and Related Materials, vol. 4, no. 8, pp. 1041-1045, 1995/06/01/ 1995.
[50] J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, "Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond," Journal of Applied Physics, vol. 70, no. 3, pp. 1706-1711, 1991.
[51] J. Robertson, "Deposition mechanism of cubic boron nitride," Diamond and Related Materials, vol. 5, no. 3-5, pp. 519-524, 1996.
[52] P. C. Kelires, C. H. Lee, and W. R. Lambrecht, "Structural studies and electronic properties of diamond-like amorphous carbon," vol. 164-166, pp. 1131-1134, 1993.
[53] P. J. Fallon et al., "Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy," Physical Review B, vol. 48, no. 7, pp. 4777-4782, 1993.
[54] C.-Y. Hsu, L.-Y. Chen, and F. Chau-Nan Hong, "Properties of diamond-like carbon films deposited by ion plating with a pulsed substrate bias," vol. 7, no. 6, pp. 884-891, 1998.
[55] T. Miyamoto, "Tribological characteristics of amorphous carbon films investigated by point contact microscopy," vol. 9, no. 2, p. 1336, 1991.
[56] J. C. Angus, "Diamond and diamond-like films," vol. 216, no. 1, pp. 126-133, 1992.
[57] J. Robertson, "The deposition mechanism of diamond-like a-C and a-C: H," Diamond and Related Materials, vol. 3, p. 361, April 01, 1994.
[58] J. Robertson, "Deposition mechanisms for promoting sp3 bonding in diamond-like carbon," vol. 2, no. 5-7, pp. 984-989, 1993.
[59] W. Pompe, H.-J. Scheibe, A. Richter, H.-D. Bauer, K. Bewilogua, and C. Weissmantel, "On the influence of residual stresses and density fluctuations on the crystallization of amorphous carbon films," Thin Solid Films, vol. 144, no. 1, pp. 77-92, 1986.
[60] S. Camargo Jr, A. B. Neto, R. Santos, F. Freire Jr, R. Carius, and F. Finger, "Improved high-temperature stability of Si incorporated aC: H films," Diamond and Related Materials, vol. 7, no. 8, pp. 1155-1162, 1998.
[61] A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, "rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications," vol. 54, no. 8, p. 4590, 1983.
[62] C. Mapelli, C. Castiglioni, G. Zerbi, and K. Müllen, "Common force field for graphite and polycyclic aromatic hydrocarbons," vol. 60, no. 18, pp. 12710-12725, 1999.
[63] H. R. Koenig and L. I. Maissel, "Application of RF Discharges to Sputtering," IBM Journal of Research and Development, vol. 14, no. 2, pp. 168-171, 1970.
[64] A. Anders, Cathodic arcs: from fractal spots to energetic condensation. Springer Science & Business Media, 2009.
[65] G. C. Watt and P. J. Evans, "A trigger power supply for vacuum arc ion sources," IEEE transactions on plasma science, vol. 21, no. 5, pp. 547-551, 1993.
[66] 何以侃, "儀器分析," 文京圖書有限公司, vol. 台北台灣, 1997.
[67] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, 1989.
[68] R. Nonogaki, S. Yamada, T. Araki, and T. Wada, "High rate deposition of diamond-like carbon films by sheet-like plasma chemical vapor deposition," vol. 17, no. 3, p. 731, 1999.
[69] I. Watanabe, T. Matsushita, and K. Sasahara, "Low-Temperature Synthesis of Diamond Films in Thermoassisted RF Plasma Chemical Vapor Deposition," Jpn. J. Appl. Phys., vol. 31, no. Part 1, No. 5A, pp. 1428-1431, 1992.
[70] F. Tuinstra and J. L. Koenig, "Raman Spectrum of Graphite," The Journal of Chemical Physics, vol. 53, no. 3, pp. 1126-1130, 1970
[71] S. A. Solin, "Raman and IR studies of graphite intercalates," vol. 99, no. 1-4, pp. 443-452, 1980.
[72] H. c. Tsai, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton, and S. T. Mayer, "Structure and properties of sputtered carbon overcoats on rigid magnetic media disks," Journal of Vacuum Science & Technology A, vol. 6, no. 4, pp. 2307-2315, 1988.
[73] M. A. Tamor and W. C. Vassell, "Raman ‘‘fingerprinting’’ of amorphous carbon films," Journal of Applied Physics, vol. 76, no. 6, pp. 3823-3830, 1994.
[74] M. A. Capano, N. T. McDevitt, R. K. Singh, and F. Qian, "Characterization of amorphous carbon thin films," Journal of Vacuum Science & Technology A, vol. 14, no. 2, pp. 431-435, 1996.
[75] C. Casiraghi, A. C. Ferrari, and J. Robertson, "Raman spectroscopy of hydrogenated amorphous carbons," Physical Review B, vol. 72, no. 8, p. 085401, 08/01/ 2005.
[76] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, no. 20, pp. 14095-14107, 05/15/ 2000.
[77] R. O. Dillon, J. A. Woollam, and V. Katkanant, "Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films," Physical Review B, vol. 29, no. 6, pp. 3482-3489, 1984.
[78] R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, "Raman scattering characterization of carbon bonding in diamond and diamondlike thin films," Journal of Vacuum Science & Technology A, vol. 6, no. 3, pp. 1783-1787, 1988.
[79] A. C. Ferrari and J. Robertson, "Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 362, no. 1824, pp. 2477-2512, 2004.
[80] G. Irmer and A. Dorner-Reisel, "Micro-Raman studies on DLC coatings," Advanced Engineering Materials, vol. 7, 8, pp. 694-705, 08/01 2005.
[81] A. Singha, A. Ghosh, A. Roy, and N. R. Ray, "Quantitative analysis of hydrogenated diamondlike carbon films by visible Raman spectroscopy," vol. 100, no. 4, p. 044910, 2006.
[82] B. K. Gan, M. M. M. Bilek, D. R. McKenzie, P. D. Swift, and G. McCredie, "Optimizing the triggering mode for stable operation of a pulsed cathodic arc deposition system," Plasma Sources Science and Technology, vol. 12, no. 4, pp. 508-512, 2003.
校內:2025-08-11公開