簡易檢索 / 詳目顯示

研究生: 張凱評
Chang, Kai-Ping
論文名稱: 非均勻變曲率樑的異平面振動分析
Out of Plane Vibrations of Non-uniform Beams with Variable Curvature
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 51
中文關鍵詞: 異平面振動曲樑變曲率非均勻樑元素自由振動
外文關鍵詞: out-of-plane vibration, curved beam, variable curvature, non-uniform beam, free vibration
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於非均勻變曲率樑的異平面振動分析中,首先利用漢米爾頓原理求得兩個耦合的微分方程式,進而藉由兩個具有物理意義的參數簡化原來兩個耦合的微分方程式以便於分析。經由消去扭轉旋轉角後,兩個耦合的微分方程式非耦合化,而成為一個以彎曲位移為因變數的六階微分方程式。扭轉旋轉角亦可表示成以彎曲位移為因變數的關係式。如果非均勻變曲率樑的材料及幾何變化可利用多項式的形式表示,那麼異平面非均勻變曲率樑的振動真確解即可獲得。最後再以一些常用的例子來說明推導的正確性,並討論邊界條件、曲樑錐度、曲樑細長比、變曲率及曲樑中心角對自然頻率的影響。

    The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle. Two physical parameters are introduced to simplify the analysis. By reducing the order of differential operator acting on the torsional angle, one uncouples the two governing characteristic differential equations with variable coefficients and reduces them into a sixth-order ordinary differential equation with variable coefficients in terms of the flexural displacement parameter for the first time. The explicit relations between the flexural displacement and the torsional angle are also revealed. It is shown that if the material and geometric properties of the beam are in arbitrary polynomial forms, then the exact solutions for the out-of-plane vibrations of non-uniform beams with variable curvature can be obtained. Finally, the influence of the boundary conditions, the taper ratio, the slenderness ratio, the curvature parameter and the arc angle parameter on the curved beams is explored.

    中文摘要 .............................................. I Abstract ............................................. II 誌謝 .................................................. III Contents ............................................. IV List of Tables ....................................... VI List of Figures ...................................... VII Nomenclature ......................................... X Chapter 1 Introduction ....................................... 1 1.1 Preface ......................................... 1 1.2 Literature Review ............................... 1 1.3 Research Motive and Method ...................... 4 1.4 Scope ........................................... 5 2 Coupled Governing Equations ........................ 7 3 Out-of-Plane Vibrations ............................ 13 3.1 Uncoupled Governing Differential Equations in Terms of the Flexural Displacement ............................ 14 3.1.1 Non-uniform Beams with Variable Curvature ...... 14 3.1.1.1 Coupled Differential Equations in terms of W* and Ф*..................................................15 3.1.1.2 Uncoupled Governing Differential Equations in terms of W*............................................... 16 3.1.1.3 Explicit Relations ........................... 18 3.1.2 Non-uniform Beams with Constant Curvature ...... 18 3.1.3 Uniform Beams with Variable Curvature .......... 19 3.1.4 Curved Uniform Bernoulli-Euler Beams ........... 20 3.2 Exact Fundamental Solutions ...................... 20 4 Numerical Results and Discussion ................... 23 5 Conclusions ........................................ 30 Reference ............................................ 46 Appendix ............................................. 50 Vita ................................................. 51

    Andreaus, U.; Batra, R.C.; Porfiri, M.: Vibrations of cracked Euler-Bernoulli beams using Meshless Local Petrov-Galerkin (MLPG) Method, CMES: Computer Modeling in Engineering & Sciences, vol. 9, no. 2, pp. 111-132, 2005.

    Auciello, N.M., De Rosa, M.A.: Free vibrations of circular arches: a review, Journal of Sound and Vibration, vol. 174, no. 4, pp. 433-458, 1994.

    Banerjee, J.R.: Free vibration analysis of a twisted beam using the dynamic stiffness method, International Journal of Solids and Structures, vol. 38, pp. 6703-6722, 2001.

    Beda, P.B.: On deformation of an Euler-Bernoulli beam under terminal force and couple, CMES: Computer Modeling in Engineering & Sciences, vol. 4, no. 2, pp. 231-238, 2003.

    Byoung, K.L.; Sang, J.O.; Jeong, M.M.; Tae, E.L.: Out-of-plane free vibrations of curved beams with variable curvature, Journal of Sound and Vibration, vol. 318, no. 1-2, pp. 227-246, 2008.

    Childamparam, P.; Leissa, A.W.: Vibrations of planar curved beams rings and arches, Applied Mechanics Reviews, vol. 46, no. 9, pp. 467-483, 1993.

    Huang, C.H.; Shih, C.C.: An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler-Bernoulli beam, CMES: Computer Modeling in Engineering & Sciences, vol. 21, no. 3, pp. 239-254, 2007.

    Huang, C.S.; Tseng, Y.P.; Lin, C.J.: In-plane transient responses of arch with variable curvature using dynamic stiffness method, ASCE Journal of Engineering Mechanics, vol. 124, no. 8, pp. 381-401, 1998.

    Laura, P.A.A.; Maurizi, M. J.: Recent research on vibrations of Arch-Type structures, Shock and Vibration Digest, vol. 7, pp. 3-14, 1987.

    Laura, P.A.A.; Bambill, E.; Filipich, C.P.; Rossi, R.E.: A note on free flexural vibrations of a non-uniform elliptical ring in its plane, Journal of Sound and Vibration, vol. 126, no. 2, pp. 249-254, 1988.

    Lecoanet, H.; Piranda, J.: In plane vibrations of circular rings with a radically variable thickness, ASME Journal of Vibration Acoustics Stress Reliability Design, vol. 105, no. 1, pp. 137-143, 1983.

    Lee, S.Y.; Chao, J.C.: Out-of-plane vibrations of curved non-uniform beams of constant radius, Journal of Sound and Vibration, vol. 238, no. 3, pp. 443-458, 2000.

    Lee, S.Y.; Lin, S.M.: Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions, Journal of Applied Mechanics-Transactions of the ASME, vol. 63, no. 2, pp. 474-478, 1996.

    Lee, S.Y.; Lin, S.M.; Lee, C.S.; Lu, S.Y.; Liu, Y.T.: Exact large deflection solutions of beams with nonlinear boundary conditions, CMES: Computer Modeling in Engineering & Sciences, vol. 30, no. 1, pp. 27-36, 2008.

    Lee, S.Y.; Sheu, J.J.: Free vibrations of an inclined rotating beam, Journal of Applied Mechanics-Transactions of the ASME, vol. 74, no. 3, pp. 406-414, 2007.

    Lee, S.Y.; Wu, J.S.: Exact solutions for the free vibration of extensional curved non-uniform Timoshenko beams, CMES: Computer Modeling in Engineering & Sciences, vol. 40, no. 2, pp. 133-154, 2009.

    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed, Dover, New York, 1944.

    Murthy, V.R.; Nigam, N.C.: Dynamic characteristics of stiffened rings by transfer matrix approach, Journal of Sound and Vibration, vol. 39, no. 2, pp. 237-245, 1975.

    Nelson, F.C.: Out-of-plane vibration of a clamped circular ring segment, Journal of the Acoustical Society of American, vol. 35, no. 6, pp. 933-934, 1963.

    Suzuki, K.; Kosawada, T.; Takahashi, S.: Out-of-plane vibrations of curved bars with varying cross-section, Bulletin of the Japan Society of Mechanical Engineers, vol. 26, no. 212, pp. 268-275, 1983.

    Tarnopolskaya, T.; De Hoog, F.; Fletcher, N.H.; Thwaites, S.: Asymptotic analysis of the free in-plane vibrations of beams with arbitrarily varying curvature and cross-section, Journal of Sound and Vibration, vol. 196, no. 5, pp. 659-680, 1996.

    Vinod, K.G.; Gopalakrishnan, S.; Ganguli, R.: Wave propagation characteristics of rotating uniform Euler-Bernoulli beams, CMES: Computer Modeling in Engineering & Sciences, vol. 16, no. 3, pp. 197-208, 2006.

    Volterra, E.; Morell, J. D.: Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature, Journal of Applied Mechanics-Transactions of the ASME, vol. 28, pp. 624-627, 1961.

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE