| 研究生: |
李育庭 Li, Yu-Ting |
|---|---|
| 論文名稱: |
擔載鋰離子之全矽Beta沸石觸媒催化大豆油轉酯化反應機構之探討 Study on Mechanism of Transesterification Reaction of Soybean oil by Using Lithium-loaded All-Silica Zeolite BEA |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 生質柴油 、轉酯化反應 、全矽Beta沸石 、離子交換法 、氫氧化鋰 、固態核磁共振 |
| 外文關鍵詞: | Biodiesel, Transesterification, All-silica zeolite beta, Ion exchange method, Solid-state NMR |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,生質柴油的生產以植物油和動物脂肪作為原料,因為生質柴油的永續性、無毒、生物可降解和低碳排放量的特性,使得它被認為是很有潛力的可再生能源,甚至認為未來它能夠取代價格逐漸升高的化石燃料,因此近年來許多的科學家去研究如何改進生質柴油的生產製程。生質柴油為脂肪酸烷基酯類的混合物,最常見的生產方式為利用觸媒來催化三酸甘油酯的轉酯化反應,在工業上大多使用勻相觸媒來催化轉酯化反應,但是移除觸媒和純化產物的繁雜程序增加了整體的生產成本,使用異相觸媒雖然效率上不及勻相觸媒,但是它容易分離的特性解決了勻相觸媒在生產時難以解決的問題,權衡之下,使用固體觸媒來生產生質柴油是個非常有潛力的選擇。
本研究主要以水熱合成法來製備全矽Beta沸石(All-Silica Zeolite BEA)作為催化大豆油轉酯化反應,但是尚未改質的全矽Beta沸石觸媒並沒有催化轉酯化反應的活性,需要利用離子交換法來對觸媒改質,使全矽Beta沸石擔載鋰離子來催化轉酯化反應。實驗將分為兩大部分,第一部分為不同鋰擔載量的沸石觸媒對於轉酯化反應產率及耐用性的探討,第二部分為利用各種儀器來分析各種不同鋰擔載量的沸石觸媒,來研究活性物質鋰是如何來催化轉酯化反應。
全矽Beta沸石以莫耳比例:1 SiO2: 0.546 TEAOH: 0.538 NH4F: 6 H2O在150 ℃下以水熱法合成五天即可得到全矽Beta沸石。離子交換方面,鋰擔載量隨著離子交換LiOH(aq)的濃度上升而上升,但在中性的環境下 (LiCl(aq))離子交換效果就相當的差。大多數的觸媒在油:醇:觸媒重量比1:25:1並且在60 C下反應會有不錯的轉酯化效果,可以在4小時內達到70 %的產率。在耐用性方面0.2M LiOH Si-BEA有最好的耐用性,反應第11次還有50 %的產率。經由觸媒的鑑定,發現全矽Beta沸石Q4 [4Si] 的結構經LiOH(aq)離子交換形成Q3 [3Si,1Li]的結構,因Q3 [Si(OSi)3(OLi)]結構上的氧原子(3.5)和鋰原子(0.98)的電負度差,形成了路易士鹼的鹼性位置,使得甲醇變成甲醇陰離子(CH3O-),對三酸甘油酯上的羰基進行親核基攻擊,產生一連串的反應最終得到甘油及生質柴油。
In this study, the all-silica zeolite beta, i.e. zeolite beta without aluminum present, was synthesized and properly modified to catalyze the transesterification reaction of triolein/soybean oils to fatty acid methyl esters (FAMEs, aka biodiesel) in excess methanol. All-silica zeolite beta (denoted as Si-BEA) was synthesized via the hydrothermal processes by using silica-gel (Ludox® AS-40) as a starting material with an addition of NH4F and tetraethylammonium hydroxide at 150 C for 5 days. Si-BEA was further modified with the LiOH ion exchange method. The properties of zeolite were characterized with XRD, solid-state NMR, SEM, BET and TPD. Variables in transesterification process such as lithium loading, basicity and reaction temperature were studied to optimize the reaction conditions. The yield under the optimal condition exceeded 80% in 2h reaction at 60 C using Si-BEA modified via 0.2M LiOH ion exchange method, denoted as 0.2M LiOH Si-BEA. Moreover, the durability of catalysts varies with lithium loading and basicity. The yield of transesterification using 0.2M LiOH Si-BEA could still reach 40% in the 11th cycles of the transesterification reaction. The 29Si ssNMR revealed that, on Si-BEA, the Q4 [4Si] structure was partially degraded to the Q3 [3Si, 1Li] structure via LiOH ion exchange method. Because of electronegativity difference between lithium (0.98) and oxygen (3.5), the Q3 [3Si, 1Li] structure provides the sites of Lewis base and makes adsorbed methanol deprotonated. Thus, deprotonated methanol nucleophilically attacks the carbonyl group of triglycerides. Eventually, the triglycerides were turned to glycerol and biodiesel via this proposed mechanism.
ASTM D6584-13. Standard Test Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. (2013)
Attfield, M.P., Catlow, C.R.A., Sokol, A.A. True Structure of Trigonal Bipyramidal SiO4F- Species in Siliceous Zeolites. Chem. Mater., 13, 4708-4713 (2001)
Avhad, M.R., Marchetti, J.M. Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: A review. Catalysis Reviews, 58, 157-208 (2016)
Barcia, P.S., Silva, J.A.C. and Rodrigues, A.E. Adsorption equilibrium and kinetics of branched hexane isomers in pellets of BETA zeolite. Microporous and Mesoporous Materials, 79, 145-163 (2005)
Barer, R.M. Zeolites and Clay Minerals as Sorbent and Molecular Sieves. Academic Press, New York (1987)
Barrer, R.M. Hydrothermal chemistry of zeolites. Academic Press, London (1982)
Bora, P., Boro, J., Konwar, L.J., Deka, D. Formulation of microemulsion based hybrid biofuel from waste cooking oil - A comparative study with biodiesel. Journal of the Energy Institute (2015) doi: 10.1016/j.joei.2015.07.001
BP. Statistical Review of World Energy. (2016)
Breck, D.W. Crystalline molecular sieves. J. Chem. Educ., 41, 678-689 (1964)
Camblor, M.A., Corma, A., Valencia, S. Spontaneous nucleation and growth of pure silica zeolite- free of connectivity defects. Chem. Commun., 2365-2366 (1996)
Camblor, M.A., Corma, A., Valencia, S. Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. J. Mater. Chem., 8, 2137-2145 (1998)
Canakci, M., Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, 44, 1429-1436 (2001)
Çaynak, S., Gürü, M., Biçer, A., Keskin, A., Içingür, Y. Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive. Fuel, 88, 534-538 (2009)
Corma, A., Moliner, M., Cantín, Á., Díaz-Cabañas, M.J., Jordá, J.L., Zhang, D., Sun, J., Jansson, K., Hovmöller, S., and Zou, X. Synthesis and Structure of Polymorph B of Zeolite Beta. Chem. Mater., 20, 3218-3223 (2008)
Demirbas, M.F. Pyrolysis of vegetable oils and animal fats for the production of renewable fuels. Energy Education Science and Technology, 22, 59-67 (2008)
Engelhardt, G., Michel, D. High-Resolution Solid-State NMR of Silicates and Zeolites, Wiley: New York (1987)
Freedman, B., Butterfield, R.O., Pryde, E.H. Transesterification Kinetics of Soybean Oil. Journal of the American Chemical Society, 63, 1375-3380 (1986)
Freedman, B., Pryde, E.H., Mounts, T.L. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc., 61, 1638-1643 (1984)
Fyfe, C.A., Strobl, H., Kokotailo, G.T., Pasztor, C.T., Barlow, G.E. and Bradley, S. Correlations between lattice structures of zeolites and their 29Si MAS n.m.r. spectra: zeolites KZ-2, ZSM-12 and Beta. Zeolites, 8, 132-136 (1988)
Guan, G., Kusakabe, K., Sakurai, N., Moriyama. K., Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel, 88, 81-86 (2009)
Hafez, M.B., Nazmy, A.F., Salem, F. and Eldesoki, M. Fixation mechanism between zeolite and some radioactive elements. J. Radioanal. Chem., 47, 115-119 (1978)
Innocenzi, P. Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. Journal of Non-Crystalline Solids, 316, 309-319 (2003)
Intarapong, P., Iangthanarat, S., Phanthong, P., Luengnaruemitchai, A., Jai-In, S. Activity and basic properties of KOH/mordenite for transesterification of palm oil. Journal of Energy Chemistry, 22, 690-700 (2013)
Ito, T., Sakurai, Y., Kakuta, Y., Sugano, M., Hirano, K. Biodiesel production from waste animal fats using pyrolysis method. Fuel Processing Technology, 94, 47-52 (2012)
Jamil, C.A.Z., Muslim, A. Performance of KOH as a catalyst for Trans-esterification of Jatropha Curcas Oil. International Journal of Engineering Research and Applications, 2, 635-639 (2012)
Jon, H., Oumi, Y., Itabashi, K., Sano, T. Role of ammonium fluoride in crystallization process of beta zeolite. Journal of Crystal Growth, 307, 177-184 (2007)
Jorgensen, S.E., Libor, O. and Graber, K.L. Ammonia removal by use of clinoptilolite. Wat. res., 10, 213-224 (1976)
Katada, N., Hatanaka, T., Yamada, K., Niwa, M. Biodiesel production using heteropoly acid-derived soild catalyst H4PNbW11O40/WO3-Nb2O5. Appl. Catal. A Gen, 363, 164-168 (2009)
Kawashima, A., Matsubara, K., Honda, K. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 100, 696-700 (2009)
Kesraoui-Ouki, S., Cheeseman, C.R. and Perry, R. Natural zeolite utilization in pollution control: A review of applications to metals' effluents. J. Chem. Technol. Biotechnol., 59, 121-126 (1994)
Kim, M.T. Deposition behavior of hexamethydisiloxane films based on the FTIR analysis of Si–O–Si and Si–CH3 bonds. Thin Solid Films, 311, 157-163 (1997)
Krutof, A., Hawboldt, K. Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review. Renewable and Sustainable Energy Reviews, 59, 406-419 (2016)
Larlus, O. and Valtchev, V.P. Control of the morphology of All-Silica BEA-type zeolite synthesized in basic media. Chem. Mater., 17, 881-886 (2005)
Léon, C.I.S., Song, D., Su, F., An, S., Liu, H., Gao, J., Guo, Y., Leng, J. Propylsulfonic acid and methyl bifunctionalized TiSBA-15 silica as an efficient heterogenous acid catalyst for esterification and transesterification. Microporous and Mesoporous Materials, 204, 218-225 (2015)
Lotero, E., Liu, Y.J., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44, 5353-5363 (2005)
Mushrush, G., Beal, E.J., Spencer, G., Wynne, J.H., Lloyd, C.L., Hughes, J.M., Walls, C.L., Hardy, D.R. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil. Journal Environmental Science and Health A, 36, 613-622. (2001)
Newsam, J.M., Treacy, M.M.J., Koetsier, W.T. and Degruyter, C.B. Structural characterization of zeolite-Beta. Proc. R. Soc. Lond. A, 420, 375-405 (1988)
Ohmana, L.O., Ganemi, B., Bjornbom, E., Rahkamaa, K., Keiski, R.L., Paule, J. Catalyst preparation through ion-exchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPd-ZSM-5. Materials Chemistry and Physic, 73, 263-267 (2002)
Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Atabani, A.E., Chong, W.T. A global comparative review of biodiesel production from Jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renewable and Sustainable Energy Reviews, 24, 514-533 (2013)
Valerio, G., Goursot, A., Vetrivel, R., Malkina, O., Malkin, V., Salahub., D.R., Calculation of 29Si and 27Al MAS NMR Chemical Shifts in Zeolite-Beta Using Density Functional Theory: Correlation with Lattice Structure. J. Am. Chem. Soc., 120, 11426-11431 (1998)
周季霖. Study on Catalyzed Transesterification of Soybean Oil with Cancrinite-type Zeolite. (2015)
莊地龍. Study on Catalyzed Transesterification of Triglycerides with Ion-Exchanged Zeolite Beta. (2014)
陳祺凡. Study on Catalyzed Transesterification of Soybean Oil with Anaclime-type Zeolite. (2015)
校內:2021-08-02公開