| 研究生: |
汪信呈 Wang, Hsin-Cheng |
|---|---|
| 論文名稱: |
使用新式的圖案化藍寶石基板來有效地改善氮化鎵系列的發光二極體 Efficiency improvement of GaN-based LEDs using patterned sapphire substrate |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 許進恭 Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 圖案化藍寶石基板 、發光二極體 、溼式蝕刻 |
| 外文關鍵詞: | patterned sapphire substrate, LED, wet etching |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著固態照明演進至此,以發光二極體 (LEDs) 取代傳統白熾燈泡的瓶頸主要仍在亮度的提升和價格昂貴等方面。本論文中我們研究團隊使用藍寶石基板來製作圖形化之基板。為了解決上述所提到的亮度提升和價格問題。因此,我們主要在利用溼式蝕刻的方法來製作圖案化的藍寶石基板。
在基板製備方面,我們主要將實驗分成三個部份。乾式蝕刻、溼式蝕刻和圖案化藍寶石基板的應用。在乾式蝕利的實驗,我們發現到使用凸的藍寶石圖形的晶格品質會比凹的藍寶石圖形來的好。原因在於凹的圖形有很大的機會造成磊晶層無法完全包覆藍寶石基板,而且所產生的空隙不但會造成晶格品質的下降也會影響光的取出率。此外,若我們將凸的圖形尺寸縮小,效能會因為散射面面積的增加而提升。當發光二極體操作在室溫及順向電流20mA時,對於圓洞圖案之基板其輸出功率與外部量子效率是9.07mW與16.33%,大圓柱圖案之基板 (直徑和間距階為3μm)為9.52mW與16.85%,小圓柱圖案之基板 (直徑和間距階為
2μm)為9.61mW與17.31%,而傳統平坦的藍寶石基板為7.93mW與12.59%。順帶一提,大圓柱圖案之基板和傳統平面基板的發光二極體相較之下,輸出功率有著20%之提升。在溼式蝕刻的實驗,同樣製作著有凸和凹的圖形化藍寶石基板,由於藍寶石基石的各個晶格面的蝕刻速率不一樣,所以製作出來的圖案為像一個盾牌圖案(凸)和賓士圖案(凹)。在元件的輸出功率與外部量子效率方面,盾牌圖案之基板為9.89mW與17.77%,賓士圖案之基板為9.54mW與17.22%。
從此結果可以發現,溼式蝕刻所製作的凸的藍寶石基板有效能比乾式蝕刻製作的還高。這是由於溼式蝕刻所製作出來的圖案化基板的傾角(slanted sidewall angle)比乾式製作出來的還小,所以相對的增加了散射面的面積。進一步地,我們利用此盾牌構來做些微的結構變化,使其散射面積更大。在元件的輸出功率與外部量子效率方面,此深度為8000Α的新式圖案藍寶石基板為10.29mW與18.57%。若與傳統平面基板的發光二極體相較之下,輸出功率有著29.7%之提升。在最後一部份的實驗則是圖案化藍寶石基板的應用(Patterned material on sapphire substrate : PMOSS)。主要的動機在利用ELOG增加磊晶品質的功能並且結合圖案化藍寶石基板增加光取出率的能力。在磊晶方面的分析,我們利用高解析度X光繞射光譜之半高寬、漏電流、穿透式電子顯微鏡之影像、etch pit density (EPD)量測與壽命測試來評估氮化鎵磊晶層的結晶品質並且發現其磊晶品質比乾式蝕刻所製作出來的圓柱圖案化藍寶石基板好。在元件的輸出功率與外部量子效率方面,此結構(PMOSS)為9.84mW與17.78%。若與傳統平面基板的發光二極體相較之下,輸出功率有著24%之提升。
With the development of solid-state lighting, the chief bottlenecks of traditional incandescent lamps replaced with light emitting diodes (LEDs) were luminance enhancements and problem of cost down. In this paper, our group presents the patterned sapphire substrate by wet etching method for the most part to solve the above-mentioned problems. In our experiment, we would like to divide the three part for dry etching, wet etching and PSS’s application. For dry etching, from the leakage current, XRD, EPD and lifetime of experiment, we can see that the convex pattern has better crystal quality of GaN epilayer than the concave pattern. Because the structure of concave-PSS has air-gap, they could produce the poorer crystal quality. It should be noted that the air-gap could affect the optical characteristics with the change of refractive index. In this respect of size effect, the small size (2μm diameter and 2μm spacing) of convex pattern has better performance than the large size (3μm diameter and 3μm spacing) of convex pattern from the results of optical analysis. This is due to the increase of scattering surface area for small size of convex pattern. When the LEDs was operated at a forward current of 20mA at room temperature, the light output power and the external quantum efficiency were estimated to be 9.07mW and 16.33% for concave-PSS, 9.52mW and 16.85% for large-convex-PSS, 9.61mW and 17.31% for small-convex-PSS, and 7.93mW and 12.59% for conventional planar sapphire substrate, respectively. For wet etching, the light output power and the external quantum efficiency were estimated to be 10.29mW and 18.57% for structure with 8000Α-ASP. From this result, we could see that this structure with much more area of scattering surface not only solve the problem of cost down but also enhance the performance. In addition, the output power can be enhanced around 30% with the 8000Α-ASP-structure, as compared to the structure with conventional planar sapphire substrate. In PSS’s application, from the electrical characteristics, optical characteristics, XRD, EPD and lifetime, we could see that the enhanced performance could be due to combination of improved light extraction efficiency and the reduction in dislocation density using this structure. The light output power and the external quantum efficiency were estimated to be 9.84mW and 17.78% for this structure. In addition, the output power can be enhanced around 24% with this structure, as compared to the structure with conventional planar sapphire substrate.
[01] E. Fred Schubert, “ Light-Emitting Diodes,” second edition, pp. 1-16, 2006
[02] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on
p-type Mg-doped GaN films," Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
[03] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, "Metalorganic vapor phase
epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl.
Phys. Lett., vol. 48, pp. 353-355, 1986.
[04] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada and T. Mukai, “Ultra-High Efficiency White Light Emitting Diodes,” Jap. J. Appl. Phys., vol. 45, no. 41, pp. L1084-L1086, 2006
[05] S. Yoshida, S. Misawa, and S. Gonda, “Improvement on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates” Appl. Phys. Lett., vol. 42, no. 5, pp. 427-429, 1983
[06] H. Amano, N. Sawaki, and I. Akasaki, “Metalorganic vapor phase epitaxial grown of a high quality GaN film using an AlN buffer layer” Appl. Phys. Lett., vol. 48, no. 5, pp. 353-355, 1986
[07] Wei-Kai Wang, Dong-Sing Wuu , Shu-Hei LIN, Shih-Yung Huang, Pin Han and Ray-Hua Horng, “Characteristics of Flip-Chip InGaN-Based Light-Emitting Diodes on Patterned Sapphire Substrates” Jap. J. Appl. Phys., vol. 45, no. 4B, pp. 3430–3432, 2006
[08] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh, Heonsu Jeon, and Yoon Soo Park, “Enhanced light extraction from GaN-based light emitting diodes with holographically generated two dimensional photonic crystal patterns” Appl. Phys. Lett., vol. 87, 2005
[09] S. H. Huang, R. H. Horng, K. S. Wen,Y. F. Lin, K. W. Yen, and D. S. Wuu, “Improvement light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing” IEEE PTL, vol. 18, no. 24, 2006
[10] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, and T. C. Hsu, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates” IEEE QE, vol. 41, no. 11, 2005
[11] A. Hayes, J.F. Welden, E. Ostun, and R.J. Gambino, Data Storage 43
(March/April 1995)
[12] J. W. Kim, Y. C. Kim, and W. J. Lee, “Reactive ion etching mechanism of plasma enhanced chemically vapor deposited aluminum oxide film in CF4/O2 plasma” J. Appl. Phys., vol. 78, no. 3, pp. 2045-2049, 1995
[13] J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, “Reactive ion etching of GaN in BCl3/N2 plasma” J. Electrochem. Soc., vol. 144, no. 8, pp. L221-L224, 1997
[14] X. Dongzhu, Z. Dezhang, P. Haochang, X. Hongjie, and R. Zongxin, “Enhanced etching of sapphire damaged by ion implantation” J. Phys. D: Appl. Phys., vol.31, pp. 1647-1651, 1998
[15] H. Ishiwara, H. Yamamoto, and S. Furukawa, “Lateral solid phase epitaxy of amorphous Si films on Si substrates with SiO2 patterns” Appl. Phys. Lett., vol.43, no. 11, pp. 1028-1030, 1983
[16] M. Grundmann, A. Krost, D. Bimberg, O. Ehrmann, and H. Cerva, “Maskless growth of InP stripes on patterned Si (000a): Defect reduction and improvement of optical properties” Appl. Phys. Lett., vol. 60, no. 26, pp. 3292-3294, 1992
[17] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taduchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy” Jpn. J. Appl. Phys., vol. 40, pp. L583-585, 2001
[18] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “ Enhancement of light extraction of GaN-based light emitting diodes with a microstructure array” OE Lett., vol. 43, no. 8, pp. 1700-1701, 2004
[19] 莊達人『VLSI 製造技術』,pp. 263-278
[20] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices” J. Appl. Phys., vol.86, 1999
[21] E. Fred Schubert, “ Light-Emitting Diodes,” second edition, pp. 86-90, 2006
[22] Shuji Nakamura, “InGaN Multiquantum-Well-Structure Laser Diodes with GaN–AlGaN Modulation-Doped Strained-Layer Superlattices” IEEE Sle. Topics in Quan. Electr., vol. 4, no. 3, 1998
[23] Hyung Koun Cho, Dong Chan Kim, Hee Jun Lee, Hung Seob Cheong, Chang Hee Hong, “Microstructural analysis of GaN films grown by a two-step technique on patterned GaN and sapphire” Superlat. & Microst., vol. 36, pp. 385-391, 2004
[24] K.J. Linthicum, T. Gehrke, D.B. Thomson, K.M.Tracy, “Process routes for low defect-density GaN on various Substrates employing pendeo-epitaxial growth techniques” JNRS, 1999
[25] A.M. Roskowski, P.Q. Miraglia, E.A. Preble, S. Einfeldt, R.F. Davis, “Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN (0001) films via MOVPE” JCG, vol. 241, pp. 141-150, 2002
[26] Isao Kidoguchi, Akhiko Ishibashi, Gaku Sugahara and Yuzaburoh Ban, “Air bridged lateral epitaxial overgrowth of GaN thin films” Appl. Phys. Lett., vol. 76, 2000
[27] Yasutoshi Kawaguhi, Gaku Sugahara, Atsunori Mochida, Toshitaka Shimamoto, Akihiko Ishibashi, and Toshiya Yokogawa, “Low dislocation density AlGaN layer by air bridged lateral epitaxial growth” Phys. Stat. sol. (c), vol. 0, no. 7, pp. 2107-2110, 2003
[28] Y. Chen, R. Schneider, S.Y. Wang, R. S. Kem, C. H. Chen, and C. P. Kuo, “Dislocation resuction in GaN thin films via lateral overgrowth from trenches” Appl. Phys. Lett. Vol. 75, 1999
[29] Carol I. H. Ashby, Christine C. Mitchell, Jung Han, Nancy A. Missert, Paula P. Provencio, David M. Follstaedt, Gregory M. Peake, and Leonardo Griego, “Low dislocation density GaN from a single growth on a texture substrate” Appl. Phys. Lett. vol. 77, 2000
[30] E. Fred Schubert, “ Light-Emitting Diodes,” second edition, pp. 91-97, 2006
[31] I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, and H. Tamaki, “White LEDs for solid state lighting” Proc. of SPIE, vol. 5187, p. 3, 2004
[32] H.S. Cheong, M.K. Yoo, H. G. Kim, S. J. Bae, C. S. Kim, C. H. Hong,
J. H. Baek, H. J. Kim, Y. M. Yu, and H. K. Cho, “Direct heteroepitaxial lateral overgrowth of GaN on stripe patterned sapphire substrates with very thin SiO2 masks” Phys. Stat. Sol. (b), vol. 241, no. 12, pp. 2763-2766, 2004
[33] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, and
R. J. Molnar, “Dislocation density in GaN determined by photoelectrochemical and hot-wet etching” Appl. Phys. Lett., vol. 77, no. 22, 2000
[34] F. Dwikusuma, D. Saulys, and T. F. Kuech, “Study on sapphire surface preparation for Ⅲ-nitride heteroepitaxial growth by chemical treatments” J. Electrochem. Soc., vol.149, no. 11, pp. G603-G608, 2002
[35] 謝奇勳、藄振瀛,『成長於圖案化藍寶石基板之氮化鎵發光二極體特性分析』pp. 12-13, 2007
[36] Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, “Fabrication and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates” J. Electrochem. Soc., vol. 153, no. 12, pp. G1106-G1111, 2006
[37] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, “InGaN-based near ultraviolet and blue light emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode” Jpn. J. Appl. Phys., vol. 41, pp. L1431-L1433, 2002
[38] S. Watanabe, N. Yamada, and M. Nagashima, “Internal quantum efficiency of highly efficient InxGa1-xN-based near ultraviolet light emitting diodes” Appl. Phys. Lett., vol. 83, no. 24, 2003
[39] H. Kudo, Y. Ohuchi, T. Jyouichi, T. Tsunekawa, and H. Okagawa, “Demonstration of high efficient InGaN based violet light emitting diodes with an external quantum efficiency of more than 40%” Phys. Stat. sol. (a), vol. 200, pp. 95-98, 2003
[40] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, and T. C. Wen, “Nitride-based LEDs fabricated on patterned sapphire substrates” Sol. Stat. elect., vol. 47, 2003
[41] Y. P. Hsu, S. J. Chang, and Y. K. Su, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs” J. Cry. Crow., vol. 261, 2004
[42] Y. J. Lee, T. C. Hsu, H. C. Kuo, and M. J. Jou, “Improvement in light output efficiency of near ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates” Material Sci. Eng. B, vol. 122, 2005
[43] D. S. Wuu, K. Wang, W. C. Shih, and R. H. Horng, “Enhanced output power of near ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates” IEEE PTL, vol. 17, no. 2, 2005
[44] W. K. Wang, W. S. Wuu, S. H. Lin, and R. H. Horng, “Efficiency improvement of near ultraviolet InGaN LEDs using patterned sapphire substrates” IEEE QE, vol. 41, no. 11, 2005
[45] W. K. Wang, D. S. Wuu, W. C. Shih, and R. H. Horng, “Near ultraviolet InGaN/GaN light emitting diodes grown on patterned sapphire substrates” Jap. J. Appl. Phys., vol. 44, no. 4B, 2005
[46] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, and R. H. Horng, “InGaN-based light emitting diodes grown on grooved sapphire substrates” Phys. Stat. sol. (c), vol. 3, no. 6, pp. 2141-2144, 2006
[47] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, and Y. S. Yu, “Fabrication of pyramidal patterned sapphire substrates for high efficiency InGaN-based light emitting diodes” J. Electrochem. Soc., vol. 153, no. 8, 2006
[48] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, and S. Y. Huang, “Defect reduction and efficiency improvement of near ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template” Appl. Phys. Lett., vol. 89, no. 161105, 2006
[49] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, and H. C. Kuo, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates” IEEE PTL, vol. 18, no. 10, 2006
[50] C. C. Pan, C. H. Hsieh, C. W. Lin, and Jen Inn Chyi, “Light output improvement of InGaN ultraviolet light emitting diodes by using wet-etched stripe-patterned sapphire substrates” J. Appl. Phys., vol. 102, no. 084503, 2007