| 研究生: |
陳冠廷 Chen, Kuan-Ting |
|---|---|
| 論文名稱: |
全固態鋰離子微電池探針之開發 The development of all-solid-state lithium-ion microbattery AFM probe |
| 指導教授: |
劉浩志
Liu, Bernard Haochih |
| 共同指導教授: |
劉奕宏
Liu, Yi-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 微電極探針 、微區阻抗量測 、固態電解質 、全固態鋰離子電池 |
| 外文關鍵詞: | micro electrode AFM probe, localized impedance measurement, solid electrolyte, all-solid-state lithium-ion battery |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具備高電容量、高電壓的優勢,鋰離子電池自1990年問世以來,已被廣泛應用於可攜帶式裝置,如手機、平板電腦、智慧型穿戴裝置,以及電動汽機車等等的主要儲能系統,可見其重要性。傳統鋰離子電池的電解質多為液態狀的有機溶劑,於高溫度的工作環境下變得不穩定、造成安全上的疑慮,甚至導致燃燒或爆炸。現今,各研究團隊所關注的解決方法為固態電解質的發展;以其替換原有的有機溶劑,不僅能解決電池安全性的爭議,電池之能量密度更能提升。然而,由於固態電解質與電極接觸上的不完美,該電池面臨低離子傳導率、高界面阻抗等缺點,是全固態鋰離子電池發展的同時、需要被克服的的關鍵。
為探討鋰離子於固態電解質中的行為,本研究使用LiMn2O4尖晶石結構之電池正極材料以及磷酸鋰鋁鈦(lithium aluminum titanium phosphate, LATP)NASICON結構之固態電解質,以電化學阻抗頻譜(electrochemical impedance spectroscopy, EIS)量測其電化學特性。除了固態電解質的塊材阻抗量測,亦結合原子力顯微技術(atomic force microscopy, AFM)與EIS、分別使用無針尖(tipless)之導電白金探針與Li-Mn-O電極探針進行微區阻抗量測(localized impedance measurements, LIM)觀察LATP固態電解質與LiMn2O4電極界面的電化學特性,並施加直流偏壓,模擬材料在真實電池系統中受到電場的反應。兩種不同的量測模式中,使用白金探針觀察到固態電解質LATP內部晶粒與晶界阻抗在受偏壓時呈現先上升後下降之行為;使用Li-Mn-O探針則看到了活性材料/固態電解質之間的電荷轉移電阻隨偏壓上升之趨勢。
總結以上結果,本研究聚焦於固態電池中電解質LATP內部以及Li-Mn-O/LATP界面的微區電化學特性,期望有助於對全固態電池的了解與功能改進,以利於未來之開發。
In this study, a LiMn2O4 cathode with spinel structure and a lithium aluminum titanium phosphate (LATP) solid electrolyte with NASICON crystal structure were selected and electrochemical impedance spectroscopy (EIS) was chosen for the study of electrochemical characteristics of the objects. We use tipless platinum atomic force microscopy (AFM) probe and self-developed Li-Mn-O micro electrode AFM probe, which is prepared via a facile process, for exploring the localized electrochemical property of solid electrolyte and the interface in all-solid-state batteries. Li-Mn-O material is synthesized on the tipless probe by PVP sol-gel method and dip-pen process. The localized impedance measurement (LIM) by different probes, which are platinum blocking electrode and LiMn2O4 cathode probe, obtains different information under DC bias. One shows the growth and decline of grain resistance and grain boundary resistance of LATP, another shows the increasing of charge transfer resistance at the Li-Mn-O/LATP interface.
1. Biswas, M.M., et al., Towards implementation of smart grid: an updated review on electrical energy storage systems. 2013.
2. Nagaura, T. and K. Tozawa, Lithium ion rechargeable battery. Prog. Batteries Solar Cells, 1990. 9: p. 209.
3. Liu, Y.-H., S.-S. Liao, and B.H. Liu, Nanoscale electrochemical characterization of a solid-state electrolyte using a manganese-based thin-film probe. Nanoscale, 2016. 8(48): p. 19978-19983.
4. Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials research bulletin, 2008. 43(8): p. 1913-1942.
5. Ribeiro, J., et al. Flexible thin-film rechargeable lithium battery. in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on. 2013. IEEE.
6. Bachman, J.C., et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2015. 116(1): p. 140-162.
7. Roeder, P.L., I.H. Campbell, and H.E. Jamieson, A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology, 1979. 68(3): p. 325-334.
8. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5): p. 51-65.
9. 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書 2010 年, 2010.
10. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14): p. 911-916.
11. Xu, X., et al., Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Materials Research Bulletin, 2008. 43(8): p. 2334-2341.
12. Popovici, D., et al., Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method. Journal of the American Ceramic Society, 2011. 94(11): p. 3847-3850.
13. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930.
14. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
15. Meyer, E., Heinzelmann in Scanning Tunneling Microscopy II. 1992, Heidelberg, Springer.
16. Liu, C., Foundations of MEMS. 2012: Pearson Education India.
17. Zou, J., et al., A mould-and-transfer technology for fabricating scanning probe microscopy probes. Journal of Micromechanics and Microengineering, 2003. 14(2): p. 204.
18. Wakihara, M. and O. Yamamoto, Lithium ion batteries: fundamentals and performance. 2008: John Wiley & Sons.
19. Cope, R.C. and Y. Podrazhansky. The art of battery charging. in Battery Conference on Applications and Advances, 1999. The Fourteenth Annual. 1999. IEEE.
20. Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. J. Chem. Educ, 1983. 60(9): p. 702.
21. Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 2007: p. 1-30.
22. Yuan, X.-Z.R., et al., Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. 2009: Springer Science & Business Media.
23. O’Hayre, R., M. Lee, and F.B. Prinz, Ionic and electronic impedance imaging using atomic force microscopy. Journal of Applied Physics, 2004. 95(12): p. 8382-8392.
24. Arutunow, A., K. Darowicki, and A. Zieliński, Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochimica Acta, 2011. 56(5): p. 2372-2377.
25. Rho, Y.H., K. Kanamura, and T. Umegaki, LiCoO2 and LiMn2 O 4 Thin-Film Electrodes for Rechargeable Lithium Batteries Preparation Using PVP Sol-Gel to Produce Excellent Electrochemical Properties. journal of the Electrochemical Society, 2003. 150(1): p. A107-A111.
26. Rho, Y.H., K. Dokko, and K. Kanamura, Li+ ion diffusion in LiMn 2 O 4 thin film prepared by PVP sol–gel method. Journal of power sources, 2006. 157(1): p. 471-476.
27. Burns, J., et al., Introducing symmetric Li-ion cells as a tool to study cell degradation mechanisms. Journal of The Electrochemical Society, 2011. 158(12): p. A1417-A1422.
28. Laconte, J., D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration. 2006: Springer Science & Business Media.
29. Rossi, C., P. Temple-Boyer, and D. Estève, Realization and performance of thin SiO2/SiNx membrane for microheater applications. Sensors and Actuators A: Physical, 1998. 64(3): p. 241-245.
30. Elwenspoek, M., The form of etch rate minima in wet chemical anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 1996. 6(4): p. 405.
31. Fuller, L., Wet Etch for Microelectronics. Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY, 2008: p. 14623-5604.
32. Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
33. Liu, W., K. Kowal, and G. Farrington, Electrochemical Characteristics of Spinel Phase LiMn2 O 4‐Based Cathode Materials Prepared by the Pechini Process Influence of Firing Temperature and Dopants. Journal of the Electrochemical Society, 1996. 143(11): p. 3590-3596.
34. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
35. Gellert, M., et al., Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. The Journal of Physical Chemistry C, 2012. 116(43): p. 22675-22678.
36. Kotobuki, M. and M. Koishi, Preparation of Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3 solid electrolyte via a sol–gel route using various Al sources. Ceramics International, 2013. 39(4): p. 4645-4649.
37. Mariappan, C.R., et al., Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 ceramic. Electrochemistry Communications, 2012. 14(1): p. 25-28.
38. Schroeder, M., S. Glatthaar, and J.R. Binder, Influence of spray granulation on the properties of wet chemically synthesized Li 1.3 Ti 1.7 Al 0.3 (PO 4) 3 (LATP) powders. Solid State Ionics, 2011. 201(1): p. 49-53.
校內:2022-09-01公開