簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Kuan-Ting
論文名稱: 全固態鋰離子微電池探針之開發
The development of all-solid-state lithium-ion microbattery AFM probe
指導教授: 劉浩志
Liu, Bernard Haochih
共同指導教授: 劉奕宏
Liu, Yi-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 微電極探針微區阻抗量測固態電解質全固態鋰離子電池
外文關鍵詞: micro electrode AFM probe, localized impedance measurement, solid electrolyte, all-solid-state lithium-ion battery
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具備高電容量、高電壓的優勢,鋰離子電池自1990年問世以來,已被廣泛應用於可攜帶式裝置,如手機、平板電腦、智慧型穿戴裝置,以及電動汽機車等等的主要儲能系統,可見其重要性。傳統鋰離子電池的電解質多為液態狀的有機溶劑,於高溫度的工作環境下變得不穩定、造成安全上的疑慮,甚至導致燃燒或爆炸。現今,各研究團隊所關注的解決方法為固態電解質的發展;以其替換原有的有機溶劑,不僅能解決電池安全性的爭議,電池之能量密度更能提升。然而,由於固態電解質與電極接觸上的不完美,該電池面臨低離子傳導率、高界面阻抗等缺點,是全固態鋰離子電池發展的同時、需要被克服的的關鍵。
    為探討鋰離子於固態電解質中的行為,本研究使用LiMn2O4尖晶石結構之電池正極材料以及磷酸鋰鋁鈦(lithium aluminum titanium phosphate, LATP)NASICON結構之固態電解質,以電化學阻抗頻譜(electrochemical impedance spectroscopy, EIS)量測其電化學特性。除了固態電解質的塊材阻抗量測,亦結合原子力顯微技術(atomic force microscopy, AFM)與EIS、分別使用無針尖(tipless)之導電白金探針與Li-Mn-O電極探針進行微區阻抗量測(localized impedance measurements, LIM)觀察LATP固態電解質與LiMn2O4電極界面的電化學特性,並施加直流偏壓,模擬材料在真實電池系統中受到電場的反應。兩種不同的量測模式中,使用白金探針觀察到固態電解質LATP內部晶粒與晶界阻抗在受偏壓時呈現先上升後下降之行為;使用Li-Mn-O探針則看到了活性材料/固態電解質之間的電荷轉移電阻隨偏壓上升之趨勢。
    總結以上結果,本研究聚焦於固態電池中電解質LATP內部以及Li-Mn-O/LATP界面的微區電化學特性,期望有助於對全固態電池的了解與功能改進,以利於未來之開發。

    In this study, a LiMn2O4 cathode with spinel structure and a lithium aluminum titanium phosphate (LATP) solid electrolyte with NASICON crystal structure were selected and electrochemical impedance spectroscopy (EIS) was chosen for the study of electrochemical characteristics of the objects. We use tipless platinum atomic force microscopy (AFM) probe and self-developed Li-Mn-O micro electrode AFM probe, which is prepared via a facile process, for exploring the localized electrochemical property of solid electrolyte and the interface in all-solid-state batteries. Li-Mn-O material is synthesized on the tipless probe by PVP sol-gel method and dip-pen process. The localized impedance measurement (LIM) by different probes, which are platinum blocking electrode and LiMn2O4 cathode probe, obtains different information under DC bias. One shows the growth and decline of grain resistance and grain boundary resistance of LATP, another shows the increasing of charge transfer resistance at the Li-Mn-O/LATP interface.

    中文摘要 I Extended abstract II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVII 第一章 序論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧與理論基礎 4 2.1全固態鋰離子電池 4 2.1.1鋰離子正極材料 5 2.1.2固態電解質 7 2.2原子力顯微鏡 9 2.2.1原子力顯微鏡工作原理 9 2.2.2原子力顯微鏡探針製程 13 2.3電化學特性量測技術 15 2.3.1定電流充放電 15 2.3.2循環伏安法 16 2.3.3電化學阻抗頻譜 18 2.3.4微區阻抗量測 25 第三章 實驗方法與步驟 26 3.1實驗儀器與藥品 26 3.2實驗設計 29 3.3正極材料合成 30 3.4鈕扣半電池組裝 32 3.5固態電解質製備 34 3.6探針製程 36 3.6.1製程設計 37 3.6.2黃光微影 39 3.6.3蝕刻 41 3.6.4多層膜結構製備 43 3.6.5探針支撐結構 44 3.6.6探針成型 45 3.6.7微電極探針製備 45 3.7電化學阻抗量測 46 3.7.1固態電解質之塊材量測 46 3.7.2微區阻抗量測 47 第四章 結果與討論 49 4.1 LiMn2O4正極材料薄膜合成 49 4.1.1 薄膜組成分析 50 4.1.2 薄膜形貌分析 52 4.2 LiMn2O4正極材料電化學特性分析 56 4.2.1定電流充放電 56 4.2.2循環伏安 59 4.3 LATP固態電解質特性分析 60 4.3.1 固態電解質組成分析 60 4.3.2固態電解質形貌分析 62 4.4 探針製程結果 67 4.4.1 設計與模擬 67 4.4.2 微影與蝕刻 68 4.4.3 SU8探針支撐結構與成形 71 4.5塊材電化學阻抗量測 74 4.6微區電化學阻抗量測 77 4.6.1 白金探針量測LATP微區阻抗 80 4.6.2 Li-Mn-O電極探針量測LATP微區阻抗 82 4.7 兩種微區阻抗量測技術機制討論 85 第五章 結論與展望 87 5.1 結論 87 5.2 未來展望 88 第六章 補充資料 89 6.1 溫度550 °C熱處理之LATP塊材量測 89 6.2 使用有針尖之導電探針量測550 °C熱處理之LATP 94 6.3 機制討論 99 第七章 參考文獻 102

    1. Biswas, M.M., et al., Towards implementation of smart grid: an updated review on electrical energy storage systems. 2013.
    2. Nagaura, T. and K. Tozawa, Lithium ion rechargeable battery. Prog. Batteries Solar Cells, 1990. 9: p. 209.
    3. Liu, Y.-H., S.-S. Liao, and B.H. Liu, Nanoscale electrochemical characterization of a solid-state electrolyte using a manganese-based thin-film probe. Nanoscale, 2016. 8(48): p. 19978-19983.
    4. Patil, A., et al., Issue and challenges facing rechargeable thin film lithium batteries. Materials research bulletin, 2008. 43(8): p. 1913-1942.
    5. Ribeiro, J., et al. Flexible thin-film rechargeable lithium battery. in Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on. 2013. IEEE.
    6. Bachman, J.C., et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2015. 116(1): p. 140-162.
    7. Roeder, P.L., I.H. Campbell, and H.E. Jamieson, A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology, 1979. 68(3): p. 325-334.
    8. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5): p. 51-65.
    9. 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書 2010 年, 2010.
    10. Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14): p. 911-916.
    11. Xu, X., et al., Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique. Materials Research Bulletin, 2008. 43(8): p. 2334-2341.
    12. Popovici, D., et al., Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method. Journal of the American Ceramic Society, 2011. 94(11): p. 3847-3850.
    13. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930.
    14. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
    15. Meyer, E., Heinzelmann in Scanning Tunneling Microscopy II. 1992, Heidelberg, Springer.
    16. Liu, C., Foundations of MEMS. 2012: Pearson Education India.
    17. Zou, J., et al., A mould-and-transfer technology for fabricating scanning probe microscopy probes. Journal of Micromechanics and Microengineering, 2003. 14(2): p. 204.
    18. Wakihara, M. and O. Yamamoto, Lithium ion batteries: fundamentals and performance. 2008: John Wiley & Sons.
    19. Cope, R.C. and Y. Podrazhansky. The art of battery charging. in Battery Conference on Applications and Advances, 1999. The Fourteenth Annual. 1999. IEEE.
    20. Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. J. Chem. Educ, 1983. 60(9): p. 702.
    21. Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 2007: p. 1-30.
    22. Yuan, X.-Z.R., et al., Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications. 2009: Springer Science & Business Media.
    23. O’Hayre, R., M. Lee, and F.B. Prinz, Ionic and electronic impedance imaging using atomic force microscopy. Journal of Applied Physics, 2004. 95(12): p. 8382-8392.
    24. Arutunow, A., K. Darowicki, and A. Zieliński, Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochimica Acta, 2011. 56(5): p. 2372-2377.
    25. Rho, Y.H., K. Kanamura, and T. Umegaki, LiCoO2 and LiMn2 O 4 Thin-Film Electrodes for Rechargeable Lithium Batteries Preparation Using PVP Sol-Gel to Produce Excellent Electrochemical Properties. journal of the Electrochemical Society, 2003. 150(1): p. A107-A111.
    26. Rho, Y.H., K. Dokko, and K. Kanamura, Li+ ion diffusion in LiMn 2 O 4 thin film prepared by PVP sol–gel method. Journal of power sources, 2006. 157(1): p. 471-476.
    27. Burns, J., et al., Introducing symmetric Li-ion cells as a tool to study cell degradation mechanisms. Journal of The Electrochemical Society, 2011. 158(12): p. A1417-A1422.
    28. Laconte, J., D. Flandre, and J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration. 2006: Springer Science & Business Media.
    29. Rossi, C., P. Temple-Boyer, and D. Estève, Realization and performance of thin SiO2/SiNx membrane for microheater applications. Sensors and Actuators A: Physical, 1998. 64(3): p. 241-245.
    30. Elwenspoek, M., The form of etch rate minima in wet chemical anisotropic etching of silicon. Journal of Micromechanics and Microengineering, 1996. 6(4): p. 405.
    31. Fuller, L., Wet Etch for Microelectronics. Microelectronic Engineering, Rochester Institute of Technology, Rochester, NY, 2008: p. 14623-5604.
    32. Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
    33. Liu, W., K. Kowal, and G. Farrington, Electrochemical Characteristics of Spinel Phase LiMn2 O 4‐Based Cathode Materials Prepared by the Pechini Process Influence of Firing Temperature and Dopants. Journal of the Electrochemical Society, 1996. 143(11): p. 3590-3596.
    34. Breuer, S., et al., Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3. Journal of Materials Chemistry A, 2015. 3(42): p. 21343-21350.
    35. Gellert, M., et al., Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. The Journal of Physical Chemistry C, 2012. 116(43): p. 22675-22678.
    36. Kotobuki, M. and M. Koishi, Preparation of Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3 solid electrolyte via a sol–gel route using various Al sources. Ceramics International, 2013. 39(4): p. 4645-4649.
    37. Mariappan, C.R., et al., Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 ceramic. Electrochemistry Communications, 2012. 14(1): p. 25-28.
    38. Schroeder, M., S. Glatthaar, and J.R. Binder, Influence of spray granulation on the properties of wet chemically synthesized Li 1.3 Ti 1.7 Al 0.3 (PO 4) 3 (LATP) powders. Solid State Ionics, 2011. 201(1): p. 49-53.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE