| 研究生: |
葉民德 Yeh, Min-De |
|---|---|
| 論文名稱: |
探討蝦類Toll及IMD路徑在急性肝胰腺壞死症致病過程中所扮演之角色 Characterization and involvement of Toll and IMD pathways in AHPND-infected shrimp |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 南美白對蝦 、AHPND 、Toll免疫路徑 、IMD免疫路徑 、免疫抑制 |
| 外文關鍵詞: | Litopenaeus vannamei, AHPND, Toll pathway, IMD pathway, immune suppression |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
急性肝胰腺壞死症 (Acute hepatopancreatic necrosis disease,AHPND) 在早期蝦苗養殖時期所造成100%死亡率,導致巨大的經濟損失,其病原體是一株攜帶毒素基因PirA/B特殊質體的副溶血弧菌 (Vibrio parahaemolyticus,VP) 。先前本實驗室已建立初步AHPND的致病機轉,但對於病蝦免疫反應尚未解析。在本研究中,主要針對蝦隻抵抗細菌的免疫路徑Toll及IMD路徑在感染AHPND病蝦的變化情形進行探討。其結果顯示在VP聚集且形成菌落的病蝦胃中,Toll及IMD所調控抗菌肽的表現量會因AHPND感染而被抑制,而此現象也可在蝦隻主要免疫組織的血球細胞發現。然而,在AHPND主要病灶組織的肝胰腺中,這些基因大部分卻是過度活化,特別是IMD免疫路徑所調控的基因群。本研究後續使用dsRNA默化IMD路徑中的關鍵訊息傳遞因子Relish,抑制IMD路徑的活化以探討IMD訊息傳遞路徑在AHPND所扮演的角色。從AHPND所導致死亡率結果顯示抑制Relish的組別明顯高於控制組,推測IMD免疫路徑的過度活化是由蝦體本身所驅動的免疫反應,藉此對抗AHPND病原體的入侵。本研究首次觀測蝦體免疫分子於AHPND感染過程中之變化,有助於未來AHPND病原體與宿主互動脈絡之建立。
That acute hepatopancreatic necrosis disease (AHPND) can cause up to 100% mortality in post-larvae shrimp makes it a costly problem for the shrimp industry. The etiology of AHPND is Vibrio parahaemolyticus (VP) which has a unique plasmid containing toxic genes, PirA and PirB. Our laboratory has already reported the basic pathogenesis of AHPND. However, the immune response of AHPND-infected shrimp remains unknown. In this study, we focus on two immune pathways, Toll and IMD, in shrimp during AHPND infection. In AHPND-infected shrimp, Toll- and IMD-regulated antimicrobial peptides (AMPs) were suppressed in the stomach (where VP colonized) and in hemocytes. However, in hepatopancreas (location with most profound lesion due to AHPND), these immune genes were significantly upregulated, especially IMD-regulated immune genes. To investigate the role of the IMD pathway in AHPND-infected shrimp, dsRNA was used to silence Relish, the key factor of the IMD pathway. Mortality was significantly higher in the Relish silencing group than the control group. We inferred that overexpression of the IMD pathway was caused by a host immune response against AHPND. This was apparently the first investigation of expression of immune genes in shrimp during AHPND infection. These results will provide the basis for future studies to elucidate interactions between the host immune network and AHPND.
賴虹喬,引發蝦隻急性肝胰腺壞死病之副溶血弧菌特性及辨識病原體之唐氏綜合症細胞黏附分子異構型抗性潛力應用分析,國立成功大學生物科技研究所碩士論文,2015。
蘇美安,雷帕黴素標靶蛋白訊息傳遞路徑在白點症病毒之致病機轉中所扮演之角色,國立成功大學生物科技研究所碩士論文,2013。
Aguirre-Guzman, G., Sanchez-Martinez, J. G., Campa-Cordova, A. I., Luna-Gonzalez, A. and Ascencio, F. Penaeid shrimp immune system. The Thai Journal of Veterinary Medicine 39, 205-215, 2009.
Agarwala, K. L., Ganesh, S., Tsutsumi, Y., Suzuki, T., Amano, K. and Yamakawa, K. Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochemical and Biophysical Research Communications 285, 760-772, 2001.
Akeda, Y., Kodama, T., Saito, K., Iida, T., Oishi, K. and Honda, T. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC. Federation of European Microbiological Societies Microbiology Letters 324, 156-164, 2011.
Amparyup, P., Kondo, H., Hirono, I., Aoki, T. and Tassanakajon, A. Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Molecular Immunology 45, 1085-1093, 2008.
An, C., Jiang, H. and Kanost, M. R. Proteolytic activation and function of the cytokine Spatzle in the innate immune response of a lepidopteran insect, Manducasexta. The Federation of European Biochemical Societies Journal 277, 148-162, 2010.
Argas-Albores, F., Yepiz-Plascencia, G., Jiménez-Vega, F. and ÁvilaVilla, A. Structural and functional differences of Litopenaeus vannamei crustins. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 138, 415-422, 2004.
Bachere, E., Destoumieux, D. and Bulet, P. Penaeidins, antimicrobial peptides of shrimp, a comparison with other effectors of innate immune. Aquaculture 191, 71-88, 2000.
Bachere, E., Gueguen, Y., Gonzalez, M., de Lorgeril, J., Garnier, J. and Romestand, B. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunological Reviews 198, 149-168, 2004.
Baenke, F., Peck, B., Miess, H. and Schulze, A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumor development. Disease Models and Mechanisms 6, 1353-1363, 2013.
Bartlett, T. C., Cuthbertson, B. J., Shepard, E. F., Chapman, R. W., Gross, P. S. and Warr, G. W. Crustins, Homologues of an 11.5-kDa Antibacterial Peptide, from Two Species of Penaeid Shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology 4, 278-293, 2002.
Boman, H. Peptide antibiotics and their role in innate immunity. Annual Review of Immunology 13, 61-92, 1995.
Braak, K. Van de. Hemocytic defense in black tiger shrimp (Penaeus monodon) Doctor degree thesis. Retrived from Wageningen Institute of Animal Science. 2002.
Brites, D., McTaggart, S., Morris, K., Anderson, J., Thomas, K. and Colson, I. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Molecular Biology and Evolution 25, 1429-1439, 2008.
Bulet, P., Destoumieux, D., Strub, J. M., Van Dorsselaer, A. and Bachere, E. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. European Journal of Biochemistry 266, 335-346, 1999.
Chiang, Y. A., Hung, H. Y., Lee, C. W., Huang, Y. T. and Wang, H. C. Shrimp Dscam and its cytoplasmic tail splicing activator serine/arginine (SR) -rich protein B52 were both induced after white spot syndrome virus challenge. Fish and Shellfish Immunology 34, 209-219, 2013.
Chisholm, J. R. S. and Smith, V. J. Antibacterial activity in the hemocytes of the shore crab Carcinus maenas. Journal of the Marine Biological Association of the United Kingdom 72, 529-542, 1992.
Chou, P. H., Chang, H. S., Chen, I. T., Lee, C. W., Hung, H. Y. and Wang, H. C. Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam. Fish and Shellfish Immunology 30, 1109-1123, 2011.
Cuthbertson, B. J., Shepard, E. F., Chapman, R. W. and Gross, P. S. Diversity of the penaeidin antimicrobial peptides in two shrimp species. Journal of Biological Chemistry 269, 17338-17348, 2002.
De Gregorio, E., Han, S. J., Lee, W. J., Baek, M. J., Osaki, T., Kawabata, S. I., Lee, B. L., Iwanaga, S., Lemaitre, B. and Brey, P. T. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Developmental Cell 3, 581-592, 2002.
Deepika, A., Sreedharan, K., Paria, A., Makesh, M. and Rajendran, K. V. Toll-pathway in tiger shrimp (Penaeus monodon) responds to white spot syndrome virus infection: evidence through molecular characterization and expression profiles of MyD88, TRAF6 and TLR genes. Fish and Shellfish Immunology 41, 441-454, 2014.
Destoumieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., Bachere, E. Penaeidins, a new family of antimicrobial peptides isolated from penaeids shrimp (Decapoda). The Journal of Biological Chemistry 272, 28398-28406, 1997.
Dong, Y., Taylor, H. E. and Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. Public Library of Science Biology 4, e229, 2006.
Dong, Y., Cirimotich, C. M., Pike, A., Chandra, R. and Dimopoulos, G. Anopheles NFκB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam. Cell Host and Microbe 12, 521-530, 2012.
Erturk-Hasdemir, D., Broemer, M., Leulier, F., Lane, W. S., Paquette, N. and Hwang, D. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proceedings of the National Academy of Sciences of the United States of Americaof Sciences of the United States of America 106, 9779-9784, 2009.
Fearon, D. T. and Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50-53, 1996
Feng, N., Wang, D., Wen, R. and Li, F. Functional analysis on immune deficiency (IMD) homolog gene in Chinese shrimp Fenneropenaeus chinensis. Molecular Biology Reports 41, 1437-1444, 2014.
Flegel, T. W. Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of Invertebrate Pathology 110, 166-173, 2012.
Fuerst, P. G., Bruce, F., Tian, M., Wei, W., Elstrott, J., Feller, M. B., Erskine, L., Singer,
J.H. and Burgess, R.W. DSCAM and DSCAML1 function in self-avoidance in
multiple cell types in the developing mouse retina. Neuron 64, 484-497, 2009.
Fuerst, P. G., Harris, B. S., Johnson, K. R. and Burgess, R. W. A novel null allele of
mouse DSCAM survives to adulthood on an inbred C3H background with
reduced phenotypic variability. Genesis 48, 578-584, 2010.
Gross, P. S., Bartlett, T. C., Browdy, C. L., Chapman, R. W. and Warr, G. W. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Developmental and Comparative Immunology 25, 565-577, 2001.
Han, J. E., Tang, K. F., Tran, L. H. and Lightner, D. V. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. Diseases of Aquatic Organisms 113, 33-40, 2015.
Hancock, R. E. W. and Diamond, G. The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology 8, 402-410, 2000.
Higa, N., Toma, C., Koizumi, Y., Nakasone, N., Nohara, T., Masumoto, J., Kodama, T., Iida, T. and Suzuki, T. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling. Public Library of Science Pathogens 9, e1003142, 2013.
Hiyoshi, H., Kodama, T., Iida, T. and Honda, T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infection and Immunity 78, 1772-1780, 2010.
Hoffmann, J. A. and Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunology 2, 121-126, 2002.
Hung, H. Y., Ng, T. H., Lin, J. H., Chiang, Y. A., Chuang, Y. C. and Wang, H. C. Properties of Litopenaeus vannamei Dscam (LvDscam) isoforms related to specific pathogen recognition. Fish and Shellfish Immunology 35, 1272-1281, 2013.
Janeway, C. A. and Medzhitov, R. Innate immune recognition. The Annual Review of Immunology 20, 197-216, 2002.
Jin, X. K., Li, W. W., Wu, M. H., Guo, X. N., Li, S., Yu, A. Q., Zhu, Y. T., He, L. and Wang, Q. Immunoglobulin superfamily protein Dscam exhibited molecular diversity by alternative splicing in hemocytes of crustacean, Eriocheir sinensis. Fish and Shellfish Immunology 35, 900-909, 2013.
Kang, C. J., Wang, J. X., Zhao, X. F., Yang, X. M., Shao, H. L. and Xiang, J. H. Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish and Shellfish Immunology 16, 513-525, 2004.
Kang, C. J., Xue, J. F., Liu, N., Zhao, X. F. and Wang, J. X. Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis. Molecular Immunology 44, 1535-1543, 2007.
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. and Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122, 1999.
Kodama, T., Rokuda, M., Park, K. S., Cantarelli, V. V., Matsuda, S., Iida, T. and Honda, T. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cellular Microbiology 9, 2598-2609, 2007.
Kondo, H., Tinwongger, S., Proespraiwong, P., Mavichak, R., Unajak, S., Nozaki, R. and Hirono, I. Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome Announcements 2, 221-214, 2014.
Koziczak-Holbro, M., Joyce, C., Gluck, A., Kinzel, B., Muller, M. and Tschopp, C. IRAK-4 kinase activity is required for interleukin-1 (IL-1) receptor- and Toll-like receptor 7-mediated signaling and gene expression. The Journal of Biological Chemistry 282, 13552-13560, 2007.
Kumar, H., Kawai, T. and Akira, S. Pathogen recognition in the innate immune response. Biochemical Journal 420, 1-16, 2009.
Lai, H. C., Ng, T. H., Ando, M., Lee, C. T., Chen, I. T., Chuang, J. C., Mavichak, R., Chang, S. H., Yeh, M. D., Chiang, Y. A., Takeyama, H., Hamaguchi, H. O., Lo, C. F., Aoki, T. and Wang, H. C. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish and Shellfish Immunology 47, 1006-1014, 2015.
Lan, J. F., Zhou, J., Zhang, X. W., Wang, Z. H., Zhao, X. F., Ren, Q. and Wang, J. X. Characterization of an immune deficiency homolog (IMD) in shrimp (Fenneropenaeus chinensis) and crayfish (Procambarus clarkii). Developmental and Comparative Immunology 4, 608-617, 2013.
Leaño, E. M. and Mohan, C. V. Early mortality syndrome threatens Asia's shrimp farms. Global Aquaculture Advocate 15, 38-39, 2012
Lee, C. T., Chen, I. T., Yang, Y. T., Ko, T. P., Huang, Y. T., Huang, J. Y., Huang, M. F., Lin, S. J., Chen, C. Y., Lin, S. S., Lightener, D. V., Wang, H. C., Wang, A. H., Wang, H. C., Hor, L. I. and Lo, C. F. Vibirio parahaemolyticus: an opportunistic marine pathogen becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of Americaof Sciences of the United States of America 112, 10798-10803, 2015.
Lee, S. Y. and Soderhäll, K. Early events in crustacean innate immunity. Fish and Shellfish Immunology 12, 421-437, 2002.
Lee, C. W., Chen, I. T., Chou, P. H., Hung, H. Y. and Wang, K. C. Heterogeneous nuclear ribonucleoprotein hrp36 acts as an alternative splicing repressor in Litopenaeus vannamei Dscam. Developmental and Comparative Immunology 36, 10-20, 2012
Lemaitre, B. and Hoffmann, J. The host defense of Drosophila melanogaster. Annual Review of Immunology 25, 697-743, 2007.
Leu, J. H., Chang, C. C., Wu, J. L., Hsu, C. W., Hirono, I., Aoki, T., Juan, H. F., Lo, C. F., Kou, G. H. and Huang, H. C. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. Biomed Central Genomics 8, 120, 2007.
Leulier, F. and Lemaitre, B. Toll-like receptors taking an evolutionary approach. Nature Reviews Genetics 9, 165-178, 2008.
Li F, Yan, H., Wang, D., Priya, T. A., Li, S. and Wang, B. Identification of a novel relish homolog in Chinese shrimp Fenneropenaeus chinensis and its function in regulating the transcription of antimicrobial peptides. Developmental and Comparative Immunology 33, 1093-1101, 2009.
Li, F. H. and Xiang, J. H. Recent advances in researches on the innate immunity of shrimp in China. Developmental and Comparative Immunology 39, 11-26, 2013.
Li, F. and Xiang, J. Signaling pathways regulating innate immune responses in shrimp. Fish and Shellfish Immunology 34, 973-980, 2013.
Lightner, D. V., Redman, R. M., Pantoja, C. R., Noble, B. L. and Tran, L. H. Early mortality syndrome affects shrimp in Asia. Global Aquaculture Advocate 40, 38-39, 2012.
Liu, F. S., Liu, Y. C., Li, F. H., Dong, B. and Xiang, J. H. Molecular cloning and expression profile of putative anti-lipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Marine Biotechnology 7, 600-608, 2005.
Liverman, A. D. B., Cheng, H. C., Trosky, J. E., Leung, D. W., Yarbrough, M. L., Burdette, D. L., Rosen, M. K. and Orth, K. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proceedings of the National Academy of Sciences of the United States of America 104, 17117-17122, 2007.
Monari, C., Kozel, T. R., Paganelli, F., Pericolini, E., Perito, S., Bistoni, F., Casadevall, A. and Vecchiarelli, A. Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. The Journal of Immunology 10, 6842-6851, 2006.
Munoz, M., Vandenbulcke, F., Saulnier, D. and Bachere, E. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. European Journal of Biochemistry 269, 2678-2689, 2002.
Mylonakis, E. and Aballay, A. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infection and Immunity 7, 3833-3841, 2005.
Ng, T. H., Chiang, Y. A., Yeh, Y. C. and Wang, H. C. Review of Dscam-mediated immunity in shrimp and other arthropods. Developmental and Comparative Immunology 46, 129-138, 2014.
Ng, T. H., Hung, H. Y., Chiang, Y. A., Lin, J. H., Chen, Y. N., Chiang, Y. C. and Wang, H. C. WSSV-induced crayfish Dscam shows durable immune behavior. Fish and Shellfish Immunology 40, 78-90, 2014.
Nunan, L., Lightner, D., Pantoja, C. and Gomez-Jimenez, S. Detection of acute hepatopancreatic necrosis disease (AHPND) in Mexico. Diseases of Aquatic Organisms 111, 81-86, 2014.
Okada, R., Zhou, X., Hiyoshi, H., Matsuda, S., Chen, X., Akeda, Y., Kashimoto, T., Davis, B. M., Iida, T., Waldor, M. K. and Kodama, T. The Vibrio parahaemolyticus effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection. Cellular Microbiology 6, 938-947, 2014.
Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. and Litman, G. W., Genomic insights
into the immune system of the sea urchin. Science 314, 952-956, 2006.
Relf, J., Chisholm, J., Kemp, G. and Smith, V. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. European Journal of Biochemistry 264, 350-335, 1999.
Rolland, J.L., Abdelouahab, M., Dupont, J., Lefevre, F., Bachère, E. and Romestand, B. Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. Molecular Immunology 6, 1269-1277, 2010.
Rosa, R. D. and Barracco, M. A. Antimicrobial peptides in crustaceans. Invertebrate Survival Journal 7, 262-284, 2010.
Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J. and Muda, M. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684, 2000.
Schmucker, D. and Chen, B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes and Development 23, 147-156, 2009.
Schramm, R. D., Li, S., Harris, B. S., Rounds, R. P., Burgess, R. W. and Ytreberg, F. M. A novel mouse Dscam mutation inhibits localization and shedding of DSCAM. Public Library of Science One 7, e52652, 2012.
Schryver, P., Defoirdt, De T. and Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? Public Library of Science Pathogen 10, e1003919, 2014.
Shi, Y. R., Jin, M., Ma, F. T., Huang, Y., Huang, X., Feng, J. L., Zhao, L. L., Chen, Y. H. and Ren, Q. Involvement of relish gene from Macrobrachium rosenbergii in the expression of anti-microbial peptides. Developmental and Comparative Immunology 52, 236-244, 2015.
Soderhäll, K. Special issue: invertebrate immunity. Developmental and Comparative Immunology 23, 263-266, 1999.
Somboonwiwat, K., Marcos, M., Tassanakajon, A., Klinbunga, S., Aumelas, A., Romestand, B., Gueguen, Y., Boze, H., Moulin, G. and Bachere, E. Recombinant expression and antimicrobial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Developmental and Comparative Immunology 29, 841-851, 2005.
Song, Y. L. and Li, C. Y. Shrimp immune system-special focus on penaeidin. Journal of Marine Science and Technology 22, 1-8, 2014.
Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. and Morales-Covarrubias, M. S. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease (AHPND) of cultured shrimp (Litopenaeus vannamei) in northwestern Mexico. Applied and Environmental Microbiology 81, 1689-1699, 2015.
Sritunyalucksana, K., Lee, S. Y. and Soderhäll, K. A -1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Developmental and Comparative Immunology 26, 237-245, 2002.
Sritunyalucksana, K. and Soderhäll, K. The proPO and clotting system in crustaceans. Aquaculture 191, 53-69, 2000.
Supungul, P., Tang, S., Maneeruttanarungroj, C., Rimphanitchayakit, V., Hirono, I., Aoki, T. and Tassanakajon, A. Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. Developmental and Comparative Immunology 32, 61-70, 2008.
Takeda, K. and Akira, S. TLR signaling pathways. Seminars in Immunology 16, 3-9, 2004.
Takeuchi, O. and Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820, 2010.
Tam, J., Lu, Y. and Yang, J. Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-B strand cysteine knot framework. Biochemical and Biophysical Research Communications 267, 783-790, 2000.
Tang, H., Kambris, Z., Lemaitre, B. and Hashimoto, C. A serpin that regulates immune melanization in the respiratory system of Drosophila. Developmental Cell 15, 617-626, 2008.
Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K. and Lightner, D. V. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms 105, e55, 2013.
Trosky, J. E., Li, Y., Mukherjee, S., Keitany, G., Ball, H. and Orth, K. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. The Journal of Biological Chemistry 282, 34299-34305, 2007.
Ucker, D. S. Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death and Differentiation 23, 990-996, 2016.
Uvell, H. and Engström, Y. A multilayered defense against infection: combinatorial control of insect immune genes. Trends in Genetics 23, 342-349, 2007.
Valanne, S., Wang, J. H. and Ramet, M. The Drosophila toll signaling pathway. The Journal of Immunology 186, 649-656, 2011.
Valderrama, D. and Anderson, J., L. Shrimp Production Review. Global Outlook for Aquaculture Leadership. Santiago, 4-16, 2011.
Van Avondt, K., Van Sorge, N., M. and Meyaard, L. Bacterial immune evasion through manipulation of host inhibitory immune signaling. Public Library of Science Pathogens 11, e1004644, 2015.
Vargas-Albores, F. and Yepiz-Plascencia, G. Shrimp immunity. Trends in Comparative Biochemistry and Physiology 5, 195-210, 1998.
Wang, D. D., Li, F. H., Li, S. H., Wen, R. and Xiang, J. H. Expression profiles of different antimicrobial peptides (AMPs) and their regulation by Relish. Chinese Journal of Oceanology and Limnology 30, 611-619, 2012.
Wang, H. C., Tseng, C. W., Lin, H. Y., Chen, I. T., Chen, Y. H., Chen, Y. M., Chen, T. Y. and Yang, H. L. RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Developmental and Comparative Immunology 34, 49-58, 2010.
Wang, J. X., Li, L., Zhao, X. F., Kang, C. H., Liu, N., Xiang, J. H., Li, F. H., Sueda, S. and Kondo, H. High level expression, purified cation, and characterization of the shrimp antimicrobial peptide, Chpenaeidin, in Pichia pastoris. Protein Expression and Purification 39, 144-151, 2005.
Wang, P. H., Gu, Z. H., Huang, X. D., Liu, B. D. and Deng, X. X. An immune deficiency homolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Molecular Immunology 46, 1897-1904, 2009.
Wang, P. H., Gu, Z. H., Wan, D. H., Zhu, W. B., Qiu, W., Weng, S. P., Yu, X. Q. and He, J. G. Litopenaeus vannamei sterile-alpha and armadillo motif containing protein (LvSARM) is involved in regulation of Penaeidins and antilipopolysaccharide factors. Public Library of Science One 8, e52088, 2013.
Wang, P. H., Liang, J. P., Gu, Z. H., Wan, D. H., Weng, S. P. and Yu, X. Q. Molecular cloning, characterization and expression analysis of two novel Tolls (LvToll2 and LvToll3) and three putative Spatzle-like Toll ligands (LvSpz1e3) from Litopenaeus vannamei. Developmental and Comparative Immunology 36, 359-371, 2012.
Watson, F. L., Püttmann-Holgado, R., Thomas, F., Lamar, D. L., Hughes, M., Kondo, M., Rebel, V. I. and Schmucker, D. Extensive diversity of Ig-superfamily proteins
in the immune system of insects. Science 309, 1874-1878, 2005.
Watthanasurorot, A., Jiravanichpaisal, P., Liu, H., Söderhäll, I. and Söderhäll, K. Bacteria-induced Dscam isoforms of the crustacean, Pacifastacus leniusculus. Public Library of Science Pathogen 7, e1002062, 2011.
Xia, X., Yu, L., Xue, M., Yu, X., Vasseur, L., Gurr, G. M., Baxter, S. W., Lin, H., Lin, J. and You, M. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.). Scientific Reports 5, 9877, 2015.
Yamakawa, K., Huot, Y. K., Haendelt, M. A., Hubert, R., Chen, X. N. and Lyons, G. E. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics 7, 227-237, 1998.
Yeh, Y. C., Lee, C. W., Pan, Y. W., Hsu, Y. J., Hung, H. Y., Chen, Y. M., Lin, H. Y., Chen, T. Y., Yang, H. L. and Wang, H. C. Identification and characterization of DSCAM isoforms isolated from orange-spotted grouper Epinephelus coioides. Developmental and Comparative Immunology 38, 148-159, 2012.
Zhang, S., Li, C. Z., Yan, H., Qiu, W., Chen, Y. G. and Wang, P. H. Identification and function of myeloid differentiation factor 88 (MyD88) in Litopenaeus vannamei. Public Library of Science One 7, e47038, 2012.
Zhang, S. M., Adema, C. M., Kepler, T. B. and Loker, E. S., Diversification of Ig superfamily genes in an invertebrate. Science 305, 251-254, 2004.
Zhou, X., Gewurz, B. E., Ritchie, J. M., Takasaki, K., Greenfeld, H., Kieff, E., Davis, B. M. and Waldor, M. K. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Reports 3, 1690-1702, 2013.
校內:2021-12-31公開