簡易檢索 / 詳目顯示

研究生: 林秉頡
Lin, Bing-Jia
論文名稱: 自組裝烷基雙硫醇修飾金/砷化鎵蕭特基二極體式氮氧化物感測器之研究
Study on Nitrogen Oxides Sensors Based on Self-Assembled Alkanedithiol modified Au/GaAs Schottky Diodes
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 110
中文關鍵詞: 雙硫醇自組裝單分子層蕭特基二極體氮氧化物氣體感測器
外文關鍵詞: alkanedithiol, self-assembled monolayer, Schottky diode, nitrogen oxides, gas sensor
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以雙硫醇單分子層修飾金/砷化鎵蕭特基二極體作為氮氧化物感測器,並探討其感測特性。實驗中,首先製備金/砷化鎵蕭特基二極體,接著將元件浸泡入雙硫醇分子之酒精溶液中以修飾其金膜表面。文中改變浸泡實驗變因,例如:浸泡濃度、浸泡時間及硫醇分子結構等因素,並且藉由循環伏安法與接觸角分析來探討單分子層之吸附量、穩定性及表面特性等。其次,改變不同感測條件,包括:氣體濃度、氣體種類及操作溫度來探討元件之感測特性。
    在元件之浸泡過程中,雙硫醇分子之吸附量隨著浸泡時間、濃度及碳數而變化;當浸泡溶液之濃度由10μM提升至0.7 mM時,其吸附量隨之增加而達到一穩定值;浸泡時間增加至36小時雙硫醇吸附量達到飽和值;另外,當雙硫醇分子之碳數在3-10間時,隨碳數之增加,則形成之分子膜結構越為穩定,且其吸附量越大。
    由一氧化氮與二氧化氮氣體之感測結果可知,硫醇分子之結構對元件之電性與感測能力影響甚鉅。當雙硫醇分子之碳數越高時,其吸附層分子排列愈具自序性、且吸附量越多,因此,表面提供氣體吸附座增加,故感測靈敏度明顯提升。比較-SH、-COOH、-OH、-CH3等不同末端基硫醇單分子層修飾金/砷化鎵蕭特基二極體元件進行感測分析得知,以雙硫醇單分子層修飾具有最佳之感測效果,推測係因其硫醇基與一氧化氮、二氧化氮分別產生亞硝基硫醇(thiolnitrite)、亞硝酸硫醇(thiolnitrate)鍵結之故。亦因如此,故本元件之選擇性高、且不易受背景氣氛之影響。當氮氧化物在1-100 ppm濃度範圍內時,濃度越高時則靈敏度越大;但當操作溫度上升時,則靈敏度下降。
    綜合以上結果,烷基雙硫醇單分子層修飾金/砷化鎵蕭特基二極體可作為氮氧化物感測器,其中以癸烷基雙硫醇(HS(CH2)10SH)修飾之元件具有最佳之感測特性。在298 K下,對NO、NO2之靈敏度分別為35.3(100 ppm NO/N2)、49.5(100 ppm NO2/N2)。

    In this work, novel nitrogen oxides gases sensors based on Au/GaAs Schottky diodes modified with alkanedithiol monolayers were fabricated and studied. At first, Au/GaAs Schottky diodes were fabricated, and then the Au electrode was modified with alkanedithiol monolayer by immersing the diode in an alkanedithiol/ethanol solution. Experimentally, effects of immersion time, concentration, and structure of alkanedithiol on the adsorption amount, stability, and hydrophobicity of monolayers were investigated by using cyclic voltammetry and contact angel analysis. Moreover, the sensing characteristics of the studied devices on nitrogen oxides were investigated under various gas concentrations and temperatures.
    From the result of immersion, the adsorption amounts of alkanedithiol were not only increased with increasing immersing time but also increased with increasing the concentration and carbon number (N) of alkanedithiol. When the alkanedithiol concentration was increased from 10 μm to 0.7 mM, the adsorption amount reached to a monomolecular saturation. As the immersion time approached to 36 hr, the adsorption reached to the equilibrium. Besides, the stability of structure and adsorption amounts of monolayer were increased with increasing carbon number of alkaneditiol in the N range of 3-10.
    From results of NO and NO2 sensing performances, the effect of structure of alkanedithiol played great important role on the sensitivity and electric property of the studied device. As the N value increased, the sensitivity of device was consistently increased, since the adsorption amount of monolayer was increased and the molecule architecture tended to self-ordered. As comparing sensing performances among devices modified with different terminal groups, i.e., –SH, -COOH, -OH, and -CH3, it was found that the device modified with alkanedithiol (terminal group: -SH) showed the highest sensitivity. This was inferred that -SH group could form thiolntirite or thiolnitrate by reacting with nitrogen oxide and nitrogen dioxide, respectively. Hence, high selectivity could be obtained, which would not be easily affected by the ambience. Furthermore, the sensitivity of the studied device was increased with increasing the concentration of nitrogen oxides in the range of 1-100ppm. However, the sensitivity was decreased as the operating temperature was increased.
    In conclusion, the Au/GaAs Schottky diodes modified with alkanedithiol monolayer had been successfully fabricated and could be served as nitrogen oxides sensors. Among various studied devices, 1,10-decanedithiol modified Au/GaAs device showed the best sensing characteristics on NO and NO2. The sensitivities of this device for sensing NO and NO2 were 35.3(100 ppm NO/N2) and 49.5(100 ppm NO2/N2), respectively, at 298 K.

    誌謝 I 中文摘要 II 英文摘要 IV 總目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 氮氧化物氣體感測器 1 1.2 氮氧化物氣體感測器類型 1 1.2.1 電化學式氮氧化物氣體感測器 2 1.2.2 光學式氮氧化物氣體感測器 3 1.2.3 電阻式氮氧化物氣體感測器 4 1.2.4 蕭特基場效型氮氧化物氣體感測器 5 1.2.5 氮氧化物感測器之發展 6 1.3 自組裝單分子層 6 1.3.1 自組裝單分子層結構 6 1.3.2 自組裝單分子層之應用 8 1.4 研究動機 9 第二章 原理 17 2.1 自組裝單分子層之形成機制 17 2.2 雙硫醇分子 18 2.3 循環伏安法 20 2.4 金/半導體蕭特基接合 21 2.4.1 蕭特基接合 21 2.4.2 蕭特基二極體之電性 22 第三章 實驗 31 3.1 藥品與材料 31 3.2 分析儀器與設備 33 3.3 特性分析之試片製作 34 3.4 循環伏安法 35 3.5 蕭特基二極體式感測元件之製備 35 3.5.1 元件結構 35 3.5.2 元件之製備 36 3.6 氮氧化物氣體感測 38 3.6.1 穩態量測 38 3.6.2 暫態量測 39 第四章 結果與討論 43 4.1 雙硫醇分子之特性分析 43 4.1.1 接觸角分析 43 4.1.2 循環伏安法 43 4.1.3 UV-Vis吸收光譜分析 45 4.2 電性行為 46 4.3 氮氧化物之感測 47 4.3.1 SAM分子結構之影響 47 4.3.1.1 末端基之影響 49 4.3.1.2 碳數之影響 50 4.3.2 浸泡時間影響 51 4.3.3 感測條件之影響 52 4.3.3.1 操作溫度之影響 52 4.3.3.2 氣體濃度之影響 53 4.3.3.3 空氣氣氛之影響 54 4.3.4 選擇性測試 54 第五章 結論與建議 98 5.1 結論 98 5.2 建議 99 參考文獻 100

    1. J. Brunet, V. Garcia, A. Pauly, C. Varenne, and B. Lauron, "An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level." Sen. Actuators B., 134(2) 632-639 (2008)
    2. K. Mitchell and E. Michaelis, "Multimembrane carbon fiber electrodes for physiological measurements of nitric oxide." Electroanal., 10(2) 81-88 (1998)
    3. F. Bedioui and N. Villeneuve, "Electrochemical nitric oxide sensors for biological samples-principle, selected examples and applications." Electroanal., 15(1) 5-18 (2003)
    4. N. Miura, M. Iio, G. Lu, and N. Yamazoe, "Solid-state amperometric NO2 sensor using a sodium ion conductor." Sen Actuators: B., 35(1-3) 124-129 (1996)
    5. Y. Shimizu, H. Nishi, H. Suzuki, and K. Maeda, "Solid-state NOx sensor combined with NASICON and Pb¡VRu-based pyrochlore-type oxide electrode." Sen. Actuators B., 65(1-3) 141-143 (2000)
    6. F. Arregui, R. Claus, K. Cooper, C. Ndez-Valdivielso, and I. As, "Optical fiber gas sensor based on self-assembled gratings." J. lightwave technol., 19(12) 1932 (2001)
    7. M. nik and G. Stewart, "Coherence addressing of quasi-distributed absorption sensors by the FMCW method." J. lightwave technol., 18(1) 57 (2000)
    8. J. Ceron Solis, E. De la Rosa, and E. Pena Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure." Optical Materials, 29(2-3) 167-172 (2006)
    9. S. Barker and R. Kopelman, "Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore." Anal. Chem, 70(23) 4902-4906 (1998)
    10. H. He and Z. Fan. Optical sensitivity to NOx of Ag-doped ZnO thin films. 1998.
    11. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, "Luminescence response of ZnO nanowires to gas adsorption." Sen. Actuators B., 140(2) 461-466 (2009)
    12. J. Harper and M. Sailor, "Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon." Anal. Chem, 68(21) 3713-3717 (1996)
    13. W. H. Brattain and J. Bardeen, "Surface properties of germanium", Bell Systems Tech. J., 32 1-41 (1953)
    14. G. Heiland, "Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen." Zeitschrift für Physik A Hadrons and Nuclei, 138(3) 459-464 (1954)
    15. N. Taguchi, Japan Patent 45-38200 (1962 ).
    16. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A New Detector for Gaseous Components Using Semiconductive Thin Films." Anal. Chem., 34(11) 1502-1503 (1962)
    17. H. Svenningstorp, P. Tobias, C. Wijk, I. Lundstrom, P. Salomonsson, L. Ekedahl, and A. Spetz, "MISiC Schottky diodes as NOx sensors in simulated exhausts." Proceedings of the Eurosensors XIII, The Hague, The Netherlands, 12 15 (1999)
    18. L. Talazac, F. Barbarin, C. Varenne, and Y. Cuminal, "Highly NO2 sensitive pseudo Schottky barrier diodes on p-type InP with improved electrical characteristics." Sen. Actuators B., 77(1-2) 447-454 (2001)
    19. L. Talazac, F. Barbarin, C. Varenne, L. Mazet, S. Pellier, and C. Soulier, "Gas sensing properties of pseudo-Schottky diodes on p-type indium phosphide substrates Application to O3 and NO2 monitoring in urban ambient air." Sen. Actuators B., 83(1-3) 149-159 (2002)
    20. H. Svenningstorp, P. Tobias, A. Kroutchinine, P. Salomonsson. MISiC Schottky diodes and transistors as NH3 sensors in diesel exhausts to control SCR. Sensors ser., XIV 933-936 (2000).
    21. A. Abom, E. Comini, G. Sberveglieri, N. Finnegan, I. Petrov, L. Hultman, and M. Eriksson, "Experimental evidence for a dissociation mechanism in NH3 detection with MIS field-effect devices." Sen. Actuators B., 89(1-2) 1-8 (2003)
    22. C. Kim, J. Lee, S. Choi, I. Noh, H. Kim, N. Cho, C. Hong, and G. Jang, "Pd-and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature." Sen. Actuators B., 77(1-2) 455-462 (2001)
    23. L. Mazet, C. Varenne, A. Pauly, J. Brunet, and J. Germain, "H2, CO and high vacuum regeneration of ozone poisoned pseudo-Schottky Pd¡VInP based gas sensor." Sen. Actuators B., 103(1-2) 190-199 (2004)
    24. A. Salehi, A. Nikfarjam, and D. Kalantari, "Pd/porous-GaAs Schottky contact for hydrogen sensing application." Sen. Actuators B, 113(1) 419-427 (2006)
    25. T. Tsai, H. Chen, K. Lin, C. Hung, C. Hsu, L. Chen, K. Chu, and W. Liu, "Comprehensive study on hydrogen sensing properties of a Pd¡VAlGaN-based Schottky diode." Int. J. Hydrogen Energ., 33(12) 2986-2992 (2008)
    26. C. Chang, T. Tsai, H. Chen, K. Lin, T. Chen, L. Chen, Y. Liu, and W. Liu, "Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode." Electrochem. Commun., 11(1) 65-67 (2009)
    27. I. Langmuir, "The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids." J. Am. Chem. Soc., 38(11) 2221-2295 (1916)
    28. K. Blodgett, "Monomolecular films of fatty acids on glass." J. Am. Chem. Soc., 56(2) 495-495 (1934)
    29. W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers* 1:: I. Films adsorbed from solution in non-polar liquids." J. Colloid Interface Sci. 1(6): 513-538 (1946)
    30. A. Ulman, "Formation and structure of self-assembled monolayers." Chem. Rev, 96(4) 1533-1554 (1996)
    31. J. Love, L. Estroff, J. Kriebel, R. Nuzzo, and G. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology." Chem. Rev, 105(4) 1103-1170 (2005)
    32. G. Jennings and P. Laibinis, "Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments." Colloid. Surface. A, 116(1-2) 105-114 (1996)
    33. M. Nagtegaal, P. Stroeve, and W. Tremel, "Growth of FeO (OH) crystals on self-assembled monolayers on gold." Thin Solid Films, 327 571-575 (1998)
    34. K. Prime and G. Whitesides, "Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers." J. Am. Chem. Soc., 115(23) 10714-10721 (1993)
    35. V. Mirsky, T. Hirsch, S. Piletsky, and O. Wolfbeis, "A spreader-bar approach to molecular architecture: formation of stable artificial chemoreceptors." Angewandte Chemie International Edition, 38(8) 1108-1110 (1999)
    36. W. Wuelfing, F. Zamborini, A. Templeton, X. Wen, H. Yoon, and R. Murray, "Monolayer-protected clusters: Molecular precursors to metal films." Chem. Mater, 13(1) 87-95 (2001)
    37. N. Larsen, H. Biebuyck, E. Delamarche, and B. Michel, "Order in microcontact printed self-assembled monolayers." J. Am. Chem. Soc, 119(13) 3017-3026 (1997)
    38. M. Sauvan and C. Pijolat, "Selectivity improvement of SnO2 films by superficial metallic films." Sen Actuators B., 58(1-3) 295-301 (1999)
    39. T. Hyodo, S. Abe, Y. Shimizu, and M. Egashira, "Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof." Sen. Actuators B., 93(1-3) 590-600 (2003)
    40. L. Chen and S. Tsang, "Ag doped WO3-based powder sensor for the detection of NO gas in air." Sen. Actuators B., 89(1-2) 68-75 (2003)
    41. A. Tomchenko, V. Khatko, and I. Emelianov, "WO3 thick-film gas sensors." Sen. Actuators B., 46(1) 8-14 (1998)
    42. C. Liu, J. Li, C. Chang, Y. Chao, H. Meng, S. Horng, C. Hung, and T. Meng, "Selective real-time nitric oxide detection by functionalized zinc oxide." J. Phys D: Appl. Phys., 42 155105 (2009)
    43. C. Cantalini, M. Pelino, H. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, "Cross sensitivity and stability of NO2 sensors from WO3 thin film." Sen. Actuators B., 35(1-3) 112-118 (1996)
    44. H. Lin, S. Tzeng, P. Hsiau, and W. Tsai, "Electrode effects on gas sensing properties of nanocrystalline zinc oxide." Nanostruct. Mater., 10(3) 465-477 (1998)
    45. R. Ferro, J. Rodriguez, and P. Bertrand, "Development and characterization of a sprayed ZnO thin film-based NO2 sensor." Phys. Status Solidi C, 2(10) 3754 (2005)
    46. X. He, J. Li, and X. Gao, "Effect of V2O5 coating on NO2 sensing properties of WO3 thin films." Sen. Actuators B., 108(1-2) 207-210 (2005)
    47. M. Mohammadi and D. Fray, "Development of nanocrystalline TiO2-VEr2O3 and TiO2-VTa2O5 thin film gas sensors: Controlling the physical and sensing properties." Sen. Actuators B., 141(1) 76-84 (2009)
    48. M. Penza, R. Rossi, M. Alvisi, M. Signore, G. Cassano, D. Dimaio, R. Pentassuglia, E. Piscopiello, E. Serra, and M. Falconieri, "Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications." Thin Solid Films, 517(22) 6211-6216 (2009)
    49. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors." Science, 287(5453) 622 (2000)
    50. P. Laibinis, G. Whitesides, D. Allara, Y. Tao, A. Parikh, and R. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold." J. Am. Chem. Soc., 113(19) 7152-7167 (1991)
    51. J. Nielsen, M. Esplandiu, and D. Kolb, "4-Nitrothiophenol SAM on Au (111) investigated by in situ STM, electrochemistry, and XPS." Langmuir, 17(11) 3454-3459 (2001)
    52. J. Williams and C. Gorman, "Alkanethiol reductive desorption from self-assembled monolayers on gold, platinum, and palladium substrates." J. Phys. Chem., 111(34) 12804-12810 (2007)
    53. Z. Mekhalif, F. Laffineur, N. Couturier, and J. Delhalle, "Elaboration of self-assembled monolayers of n-alkanethiols on nickel polycrystalline substrates: time, concentration, and solvent effects." Langmuir, 19(3) 637-645 (2003)
    54. T. Lover, W. Henderson, G. Bowmaker, J. Seakins, and R. Cooney, "Functionalization and capping of a CdS nanocluster: A study of ligand exchange by electrospray mass spectrometry." Chem. Mater, 9(8) 1878-1886 (1997)
    55. J. Noh and M. Hara, "Molecular-scale growth processes of alkanethiol self-assembled monolayers on Au (111)." Riken Review, 38 49-51 (2001)
    56. Muskal, N. and D. Mandler, "Thiol self-assembled monolayers on mercury surfaces: the adsorption and electrochemistry of [omega]-mercaptoalkanoic acids." Electrochimica Acta 45(4-5): 537-548 (1999)
    57. L. Porter Jr, D. Ji, S. Westcott, M. Graupe, R. Czernuszewicz, N. Halas, and T. Lee, "Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides." Langmuir, 14(26) 7378-7386 (1998)
    58. J. Love, D. Wolfe, R. Haasch, M. Chabinyc, K. Paul, G. Whitesides, and R. Nuzzo, "Formation and structure of self-assembled monolayers of alkanethiolates on palladium." J. Am. Chem. Soc., 125(9) 2597-2609 (2003)
    59. R. Nuzzo and D. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces." J. Am. Chem. Soc, 105(13) 4481-4483 (1983)
    60. H. Takiguchi, K. Sato, T. Ishida, K. Abe, K. Yase, and K. Tamada, "Delicate surface reaction of dialkyl sulfide self-assembled monolayers on Au (111)." Langmuir, 16(4) 1703-1710 (2000)
    61. M. Zharnikov, A. Kuller, A. Shaporenko, E. Schmidt, and W. Eck, "Aromatic self-assembled monolayers on hydrogenated silicon." Langmuir, 19(11) 4682-4687 (2003)
    62. T. Niederhauser, Y. Lua, G. Jiang, S. Davis, R. Matheson, D. Hess, I. Mowat, and M. Linford, "Arrays of chemomechanically patterned patches of homogeneous and mixed monolayers of 1-alkenes and alcohols on single silicon surfaces." Angewandte Chemie International Edition, 41(13) 2353-2356 (2002)
    63. B. Neves, M. Salmon, P. Russell, and E. Troughton Jr, "Spread coating of OPA on mica: from multilayers to self-assembled monolayers." Langmuir, 17(26) 8193-8198 (2001)
    64. T. Breen, P. Fryer, R. Nunes, and M. Rothwell, "Patterning indium tin oxide and indium zinc oxide using microcontact printing and wet etching." Langmuir, 18(1) 194-197 (2002)
    65. M. Pellerite, T. Dunbar, L. Boardman, and E. Wood, "Effects of fluorination on self-assembled monolayer formation from alkanephosphonic acids on aluminum: Kinetics and structure." J. Phys. Chem. B, 107(42) 11726-11736 (2003)
    66. G. Klingenfuss, "Order and orientation in self-assembled long chain alkanephosphate monolayers adsorbed on metal oxide surfaces." Langmuir, 17 22 (2001)
    67. S. Choi, Y. Son, Y. Lee, K. Kim, and I. Chung, "Polymerization of 3TUTS SAM Formed on ITO Substrates." Mol. Crys. Liq. Cryst., 471(1) 163-171 (2007)
    68. N. Satyanarayana, N. Gosvami, S. Sinha, and M. Srinivasan, "Friction, adhesion and wear durability of an ultra-thin perfluoropolyether-coated 3-glycidoxypropyltrimethoxy silane self-assembled monolayer on a Si surface." Philos. Mag., 87(22) 3209-3227 (2007)
    69. W. Thompson and J. Pemberton, "Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by Raman spectroscopy." Langmuir, 11(5) 1720-1725 (1995)
    70. F. M. Boldt, N. Baltes, K. Borgwarth, and J. Heinze, "Investigation of carboxylic-functionalized and n-alkanethiol self-assembled monolayers on gold and their application as pH-sensitive probes using scanning electrochemical microscopy." Surf. Sci., 597(1-3) 51-64 (2005)
    71. R. Shervedani, A. Hatefi-Mehrjardi, and A. Asadi-Farsani, "Sensitive determination of iron (III) by gold electrode modified with 2-mercaptosuccinic acid self-assembled monolayer." Anal. Chim. Acta, 601(2) 164-171 (2007)
    72. E. Malel, J. Sinha, I. Zawisza, G. Wittstock, and D. Mandler, "Electrochemical detection of Cd2+ ions by a self-assembled monolayer of 1, 9-nonanedithiol on gold." Electrochim. Acta, 53(23) 6753-6758 (2008)
    73. J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, "In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy." J. Colloid Interf. Sci., 298(2) 543-549 (2006)
    74. A.M. Etorki, A.R. Hillman, K.S. Ryder, and A. Glidle, "Quartz crystal microbalance determination of trace metal ions in solution." J. Electroanal. Chem., 599(2) 275-287 (2007)
    75. S. Moccelini, S. Fernandes, T. de Camargo, A. Neves, and I. Vieira, "Self-assembled monolayer of nickel (II) complex and thiol on gold electrode for the determination of catechin." Talanta, 78(3) 1063-1068 (2009)
    76. M. Cygan, G. Collins, T. Dunbar, D. Allara, C. Gibbs, and C. Gutsche, "Calixarene monolayers as quartz crystal microbalance sensing elements in aqueous solution." Analytical chemistry(Washington, DC), 71(1) 142-148 (1999)
    77. A. Abdelghani, C. Veillas, J. Chovelon, N. Jaffrezic-Renault, and H. Gagnaire, "Stabilization of a surface plasmon resonance (SPR) optical fibre sensor with an ultra-thin organic film: application to the detection of chloro-fluoro-carbon (CFC)." Synthetic Metals, 90(3) 193-198 (1997)
    78. G. Sigal, C. Bamdad, A. Barberis, J. Strominger, and G. Whitesides, "A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance." Anal. Chem, 68(3) 490-497 (1996)
    79. M. Collinson, E. Bowden, and M. Tarlov, "Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes." Langmuir, 8(5) 1247-1250 (1992)
    80. K. Hansen, H. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, and T. Thundat., "Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches." Analytical chemistry(Washington, DC), 73(7) 1567-1571 (2001)
    81. B. Ko, B. Babcock, G. Jennings, S. Tilden, R. Peterson, D. Cliffel, and E. Greenbaum, "Effect of surface composition on the adsorption of photosystem I onto alkanethiolate self-assembled monolayers on gold." Langmuir: the ACS journal of surfaces and colloids, 20(10) 4033 (2004)
    82. F. Ko, Z. Yeh, C. Chen, and T. Liu, "Self-aligned platinum-silicide nanowires for biomolecule sensing." J. Vac. Sci. Technol. B., 23 3000 (2005)
    83. A. Ali Umar, M. Mat Salleh, and M. Yahaya, "Self-assembled monolayer of copper (II) meso-tetra (4-sulfanatophenyl) porphyrin as an optical gas sensor." Sen. Actuators B., 101(1-2) 231-235 (2004)
    84. J. DePriest, F. Meriaudeau, P. Oden, T. Downey, A. Passian, A. Wig, and T. Ferrell, Chemically sensitive surface plasmon devices employing a self-assembled monolayer composite film. 1998.
    85. X. Zhou, L. Zhong, S. Li, S. Ng, and H. Chan, "Organic vapour sensors based on quartz crystal microbalance coated with self-assembled monolayers." Sen. Actuators B., 42(1) 59-65 (1997)
    86. D. Sutar, N. Padma, D. Aswal, S. Deshpande, S. Gupta, and J. Yakhmi, "Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor." Sen. Actuators B., 128(1) 286-292 (2007)
    87. S. Marshall, D. Schwartz, and J. Medlin, "Selective acetylene detection through surface modification of metal-insulator-semiconductor sensors with alkanethiolate monolayers." Sen. Actuators B., 136(2) 315-319 (2009)

    88. T. Leung, M. Gerstenberg, D. Lavrich, G. Scoles, F. Schreiber, and G. Poirier, "1, 6-hexanedithiol monolayers on Au (111): A multitechnique structural study." Langmuir, 16(2) 549-561 (2000)
    89. J.H. Yu, J.N. Ngunjiri, A.T. Kelley, and J.C. Gano, "Nanografting versus Solution Self-Assembly of alpha,omega-Alkanedithiols on Au(111) Investigated by AFM." Langmuir, 24(20) 11661-11668 (2008)
    90. C. Bain, E. Troughton, Y. Tao, J. Evall, G. Whitesides, and R. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold." J. Am. Chem. Soc., 111(1) 321-335 (1989)
    91. S. Chen and C. Frank, "Infrared and fluorescence spectroscopic studies of self-assembled n-alkanoic acid monolayers." Langmuir, 5(4) 978-987 (1989)
    92. J. Schlenoff, M. Li, and H. Ly, "Stability and self-exchange in alkanethiol monolayers." J. Am. Chem. Soc., 117(50) 12528-12536 (1995)
    93. L. Dubois and R. Nuzzo, "Synthesis, structure, and properties of model organic surfaces." Annu. Rev. Phys. Chem., 43(1) 437-463 (1992)
    94. D. Qu, B. Kim, C. Lee, and K. Uosaki, "1, n-Alkanedithiol (n= 2, 4, 6, 8, 10) Self-Assembled Monolayers on Au (111): Electrochemical and Theoretical Approach." Bull. Korean Chem. Soc, 30(11) 2549 (2009)
    95. P. Kohli, K. Taylor, J. Harris, and G. Blanchard, "Assembly of covalently-coupled disulfide multilayers on gold." J. Am. Chem. Soc, 120(46) 11962-11968 (1998)
    96. J. Liang, L. Rosa, and G. Scoles, "Nanostructuring, imaging and molecular manipulation of dithiol monolayers on Au (111) surfaces by atomic force microscopy." (2007)
    97. S. Kohale, S. Molina, B. Weeks, R. Khare, and L. Hope-Weeks, "Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor." Langmuir, 23(3) 1258-1263 (2007)
    98. C. Widrig, C. Chung, and M. Porter, "The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes." J. Electroanal. Chem., 310(1-2) 335-359 (1991)
    99. T. Kakiuchi, H. Usui, D. Hobara, and M. Yamamoto, "Voltammetric properties of the reductive desorption of alkanethiol self-assembled monolayers from a metal surface." Langmuir, 18(13) 5231-5238 (2002)
    100. D. A. Neamen, Semiconductor physics and devices-basic principles, 2nd edn., McGraw Hill: Boston, 2003.
    101. S. Xu, S. J. N. Cruchon-Dupeyrat, J. C. Garno, and G. Y. Liu, "In situ studies of thiol self-assembly on gold from solution using atomic force microscopy" The Journal of Chemical Physics 108: 5002(1998).
    102. D. A. Neamen, "Semiconductor physics and devices-basic principles, Third Edition", Boston: McGraw Hill, 746 (2003)
    103. Waldrop, J. R. (1984). "Electrical-Properties of Ideal Metal Contacts to GaAs - Schottky-Barrier Height." J Vac Sci Techol B 2(3): 445-448.
    104. 周彥伊,鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測研究,成功大學博士論文 (2005)
    105. C. Widrig, C. Chung, and M. Porter, "The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes." J. Electroanal. Chem. 310(1-2): 335-359 (1991).
    106. P. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, and A. Janczuk, "Nitric oxide donors: chemical activities and biological applications." Chem. Rev., 102(4): 1091-1134 (2002).
    107. D. Cameron, A. Borrajo, B. Bennett, and G. Thatcher, "Organic Nitrates, Thionitrates, Peroxynitrites, and Nitric Oxide: a Molecular Orbital Study of the RXNO2 RXONO (X= O, S) Rearrangement, a Reaction of Potential BiologicaL Significance." Can. J. Chemistry 73(10): 1627-1638 (1995).
    108. 董建圻,自組裝單分子層修飾金/砷化鎵蕭特基二極體之製備及其酒精感測特性之研究,成功大學碩士論文 (2008)

    無法下載圖示 校內:2012-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE