| 研究生: |
張凱灝 Chang, Kai-Hao |
|---|---|
| 論文名稱: |
建立過氧化氫與硝酸氣體之連續自動採樣分析儀器 Establishment of continuous automatic sampling and analysis equipment for hydrogen peroxide and nitric acid |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 臭氧 、硝酸 、過氧化氫 、連續採樣 |
| 外文關鍵詞: | Ozone, Nitric acid, Hydrogen peroxide, continuous sampling |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為有效管制臭氧,對其前驅物VOCs與NOx濃度管制需更加嚴謹,因此本研究主要使用實地採樣量測法(Observation Base Method),分別建立H2O2與HNO3之自動採樣分析系統,使H2O2與HNO3可以更即時獲取濃度值,並應用於後續光化指標(H2O2/HNO3)之比值,藉此了解臭氧敏感性物種。
整體自動化系統的應用,是藉由時間模組來控制時間,並依據寫定於Arduino MEGA2560電路板上的程式碼來控制馬達的轉速以及繼電器的切換,並即時顯示狀態在液晶面板上。
在採樣方面,由於實驗室目前所具備之HNO3採樣器為使用環狀氣固分離器,其缺點在於事前準備的工程繁瑣與無法達到連續採樣,因此本研究在硝酸採樣的部分,將原先所使用之環狀氣固分離器更改為平板式濕式氣固分離器,藉此達到連續採樣,並於後端串聯離子層析儀讓採樣數據可以即時獲取。並針對不同流速對硝酸之收集效率影響進行討論,最終於大氣中連續小時採樣,並以環狀氣固分離器做為平行比對之對象驗證系統穩定性! 另外在過氧化氫採樣的部分,以Fenton reaction 的方法監測H2O2,透過採樣器之進樣口特殊設計,使液體吸收液與大氣之充分混合,達到H2O2從氣相狀態轉成液相狀態,並將最後收集到的液體,經過高效率液相層析儀管柱後加入螢光劑與增強劑,使其螢光效果增強後經過濾打入螢光偵測器(FL Detector)進行螢光分析。
通過本研究之自動化設計後可分別在每15分鐘獲得一筆H2O2數據以及每小時獲得一筆HNO3數據。在不同之流量下,使用平板式濕式氣固分離器測試硝酸收集效率,其結果顯示當HNO3氣體流量為2 LPM、5 LPM及10 LPM時,平均收集效率分別為98.9%、98.4%及98.2%。測試在不同濃度下之過氧化氫之收集效率,結果顯示當H2O2濃度為5 ppbv 、12 ppbv 、23 ppbv 及175 ppbv時,自動儀器所採集到的收集效率為93.0%、97.1%、96.7%以及96.0%。將兩套自動化採樣分析儀器放置於戶外採樣,結果顯示HNO3氣體收集效率除了離群值2022/04/27 11~12點以及2022/04/30 09~12點分別為65%以及120%,其餘落在85~110%之間,平均收集效率為95%;H2O2氣體收集效率落在94~112%之間,平均收集效率為101%。其結果顯示自動系統採集到之HNO3 和H2O2與手動採樣之結果有高度相似度,表示此兩種自動採樣方法適用於戶外。
Ozone pollution in Taiwan is becoming more and more serious. In order to effectively reduce ozone, the precursors (NOx, VOCs) must be controlled strictly and the end products (H2O2, HNO3) can be analyzed and discussed. The main purpose of this study is to construct a continuous nitric acid analysis system and a continuous hydrogen peroxide analysis system for real-time analysis of ozone end products. Through the automatic design of this study, it can produce one H2O2 data per 15 minutes and produce one HNO3 data per hour. The collection efficiency of nitric acid for parallel plate wet denuder (PPWD) is tested at different flow rates. When the gas flow rate is 2 LPM, 5 LPM and 10 LPM, the average collection efficiency is 98.9%, 98.4% and 98.2%, respectively. The collection efficiency of hydrogen peroxide at different concentrations is tested. The results show that when the H2O2 concentration is 5 ppbv, 12 ppbv, 23 ppbv and 175 ppbv, the collection efficiency of the automatic instrument is 93.0%, 97.1%, 96.7% and 96.0%, respectively. Two sets of automated sampling and analysis instruments were placed in outdoor sampling. The results show that the collection efficiency of HNO3 is between 85% and 110%, and the average collection efficiency is 95%; the collection efficiency of H2O2 gas is between 94% and 112%, and the average collection efficiency is 101%. The results show that the HNO3 and H2O2 collected by the automatic system are highly similar to those obtained by manual sampling, indicating that the two automatic sampling methods are suitable for outdoor sampling.
1. Allegrini, I., De Santis, F., Di Palo, V., Febo, A., Perrino, C., Possanzini, M., & Liberti, A. (1987). Annular denuder method for sampling reactive gases and aerosols in the atmosphere. Science of the Total Environment, 67(1), 1-16.
2. Chen, T. F., & Chang, K. H. (2006). Formulating the relationship between ozone pollution features and the transition value of photochemical indicators. Atmospheric Environment, 40(10), 1816-1827.
3. Dasgupta, P. K., Dong, S., & Hwang, H. (1990). Diffusion scrubber-based field measurements of atmospheric formaldehyde and hydrogen peroxide.
Aerosol Science and Technology, 12(1), 98-104.
4. Fujishima, A., T. N. Rao, and D. A. Tryk (2000). Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1), 1-21.
5. Han, Z., Ueda, H., & Sakurai, T. (2006). Model study on acidifying wet deposition in East Asia during wintertime. Atmospheric Environment, 40(13), 2360-2373.
6. Tsai, C. J., Lin, Y. G. and S. C. Chen (2008). A parallel plate wet denuder for acidic gas measurement. AIChE journal, 54(8), 2198-2205.
7. Kok, G. L., Holler, T. P., Lopez, M. B., Nachtrieb, H. A., & Yuan, M. (1978a). Chemiluminescent method for determination of hydrogen peroxide in the ambient atmosphere. Environmental Science & Technology, 12(9), 1072-1076.
8. Kok, G. L., Darnall, K. R., Winer, A. M., Pitts Jr, J. N., & Gay, B. W. (1978b). Ambient air measurements of hydrogen peroxide in the California south coast air basin. Environmental Science & Technology, 12(9), 1077-1080.
9. Lazrus, A. L., Kok, G. L., Lind, J. A., Gitlin, S. N., Heikes, B. G., & Shetter, R. E. (1986). Automated fluorometric method for hydrogen peroxide in air. Analytical chemistry, 58(3), 594-597.
10. Machida, M., K. Norimoto, T. E. Watanabe, K. Hashimoto, and A. Fujishima (1999). The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. Journal of Materials science, 34(11), 2569-2574.
11. Saiz-Lopez, A., Notario, A., Albaladejo, J., & McFiggans, G. (2007). Seasonal variation of NOx loss processes coupled to the HNO3 formation in a daytime urban atmosphere: A model study. Water, air, and soil pollution, 182(1), 197-206.
12. Seinfeld, J. H., & Pandis, S. N. (1998). From air pollution to climate change. Atmospheric chemistry and physics, 1326.
13. Simon, P. K., P. K. Dasgupta, and Z. Vecera (1991). Wet effluent denuder coupled liquid/ion chromatography systems. Analytical Chemistry, 63(13), 1237-1242.
14. Simon, P. K. and P. K. Dasgupta (1993). Wet effluent denuder coupled liquid/ion chromatography systems: annular and parallel plate denuders. Analytical Chemistry, 65(9), 1134-1139.
15. Sillman, S. (1995). The use of NOy, H2O2, and HNO3 as indicators for ozone‐NO x‐hydrocarbon sensitivity in urban locations. Journal of Geophysical Research: Atmospheres, 100(D7), 14175-14188.
16. Simon, P. K. and P. K. Dasgupta (1995). Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate. Environmental science & technology, 29(6), 1534-1541.
17. Sillman, S., He, D., Cardelino, C., & Imhoff, R. E. (1997). The use of photochemical indicators to evaluate ozone-NOx-hydrocarbon sensitivity: Case studies from Atlanta, New York, and Los Angeles. Journal of the Air & Waste Management Association, 47(10), 1030-1040.
18. Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845.
19. Stein, A. F., & Lamb, D. (2003). Empirical evidence for the low-and high-NOx photochemical regimes of sulfate and nitrate formation. Atmospheric Environment, 37(26), 3615-3625.
20. Vrekoussis, M., Liakakou, E., Mihalopoulos, N., Kanakidou, M., Crutzen, P. J., & Lelieveld, J. (2006). Formation of HNO3 and NO3− in the anthropogenically‐influenced eastern Mediterranean marine boundary layer. Geophysical Research Letters, 33(5).
21. Zika, R. G., & Saltzman, E. S. (1982). Interaction of ozone and hydrogen peroxide in water: implications for analysis of H2O2 in air. Geophysical Research Letters, 9(3), 231-234.
22. 林冠宇、蔡春進(2005). 一個吸收氣體的平板式濕式分離器 (Doctoral dissertation)。行政院環境保護署環境檢驗所,(2010),空氣中無機酸類之檢測方法-離子層析電導度法,NIEA A435.71C。
23. 蔡德明、林勇明、吳義林,”臭氧敏感性指標物種與臭氧生成相關性之研究”, 第十六屆空氣污染控制技術研討會論文集,第13-18頁,1999。
24. 莊桓齊,”台灣地區臭氧敏感性光化指標之建立與探討” ,國立台灣大學環境工程研究所碩士論文,2001。
25. 陳幸芬,”台南縣臭氧敏感性物種之調查研究”,國立成功大學環境醫學研究所碩士論文,2001。
26. 彭彥彬,”屏東地區臭氧敏感性物種與光化指標之研究探討”,國立中山大學環境工程研究所碩士論文,2003。
27. 陳杜甫,”臭氧光化指標之定量及其變異研究”,國立雲林科技大學工程科技研究所博士論文,2006。
28. 林勇名,”大氣中氣相H2O2 量測方法及光化學反應機制之研究”,國立成功大學環境工程學系碩士論文,1998。
29. 陳明妮,” Fenton法應用於大氣中氣相H2O2採樣之研究”,國立成功大學環境工程學系碩士論文,2000。
30. 柯忠佑,”南台灣不同光化指標一致性研究”,國立成功大學環境工程學系碩士論文,2007
31. 何翊筠,”利用四價硫穩定劑於平板式濕式氣固分離器中收集大氣中二氧化硫”,國立成功大學環境工程學系碩士論文,2020
校內:2027-08-08公開