簡易檢索 / 詳目顯示

研究生: 游育晟
Yu, Yu-Cheng
論文名稱: 銠(III)與銥(III)環金屬錯合物之光物理、電化學性質以及理論計算研究
Photophysical, Electrochemical and Theoretical Studies of Cyclometalated Rhodium(III) and Iridium(III) Complexes
指導教授: 黃文亮
Huang, Wen-Liang
王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 224
中文關鍵詞: 有機電激發光元件光物理密度泛函理論電化學
外文關鍵詞: OLED, photophysical properties, electrochemistry, DFT calculation
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分成兩個部份。其中,第一部份利用不同推拉電子特性的
    2,2'-dipyridylamine (HDPA)、deprotonated form of 2,2'-dipyridylamine (DPA)、
    2,2'-dipyridylketone (dpk)、acetyl acetone (acac)、2,2'-bipyrimidine (bpym)
    和2,3-di-pyridin-2-yl-pyrazine (dpp)配位子,其氮配位基可與銠三價金屬和
    2-phenylpyridine (ppy) 形成六種混配基型環金屬錯合物,[Rh(ppy)2(L)]
    [L = HDPA (1)、DPA (2)、dpk (3)、acac (4)、bpym (5)和dpp (6)],
    而後進行X-ray單晶結構、光物理與電化學性質研究,並藉由密度泛函理論計算來了解
    其軌域組成。我們發現錯合物1和4只在77K下放光(主要是triplet ligand centered
    (3LC) [pi-pi*(ppy)]磷光,最大放光波長分別為460 nm 和 462 nm)。同樣地,
    錯合物2的放光型態主要為triplet ligand centered (3LC) [pi-pi*(DPA)]磷光,
    其最大放光波長為480nm (77K),而錯合物3、5與6的放光型態則主要為triplet
    ligand-to-ligand charge transfer (3LLCT) [pi(ppy)-pi*(dpk, bpym, or dpp)]磷光
    ,最大放光波長在77K和室溫下分別為520 nm、510 nm、506 nm以及555 nm、555 nm、
    551 nm。另外在電化學方面,除了錯合物2主要氧化在DPA配位子上的氧化峰為擬可逆
    (+0.081V vs. Fc/Fc+)以外,其餘銠(III)錯合物氧化在ppy配位子上的氧化峰皆不可逆
    (+1.115V for 1、+1.191V for 3、+0.733V for 4、+1.185V for 5、+1.182V for 6
    vs. Fc/Fc+),然而在還原部份,除了錯合物2和4未觀察到還原峰外,其餘皆還原在
    N^N配位子上(-1.853V for 1、-1.308V for 3、-1.510V for 5和-1.532V for 6
    vs. Fc/Fc+)。

    第二部份主要是研究含有2,2'-dipyridylamine (HDPA) or deprotonated form of
    2,2'-dipyridylamine (DPA)的銥(III)環金屬錯合物,利用不同的N^C配位子來調控放
    光能量,使其最大放光波長分佈於藍光,綠光,紅光範圍內。首先,合成4種銥(III)
    錯合物,[Ir(mppz)2(HDPA)][PF6] (1)、[Ir(mppz)2(DPA)] (2)、
    [Ir(pba)2(HDPA)][PF6] (3)和[Ir(Q)2(HDPA)][PF6] (4) (mppz =
    3-methy-l- phenylpyrazole、pba = 4-(2-pyridyl)benzaldehyde、Q =
    2,3-diphenylquinoxaline),之後以X-ray繞射、質譜、紅外線光譜和核磁共振光譜
    來鑑定其組成及結構,並探討其光物理及電化學性質,另外再藉由密度泛函理論計算
    來了解其軌域組成。錯合物1的放光型態主要為混合3MLCT和3LLCT (3MLLCT)
    [dpi(mppz2Ir)-pi*(HDPA)]磷光,最大放光波長在77K為432 nm。錯合物2的放光型態
    主要為triplet ligand centered (3LC) [pi-pi*(DPA)]磷光(480 nm at 77K;
    499 nm at 298K)。錯合物3和4的放光型態則為混合3LC和3MLCT (3LC/3MLCT)
    [dpi(Ir)-pi*(pba or Q)]磷光,最大放光波長在77K和298K下分別為525 nm、624 nm
    以及533 nm、625 nm。在電化學方面,除了錯合物2擬可逆的氧化峰主要為氧化在
    DPA配位子上(+0.100V vs. Fc/Fc+)以外,其餘銥(III)錯合物可逆或擬可逆的
    氧化峰皆氧化在d軌域上(+0.904V for 1、+1.060V for 3、+1.034V for 4 vs.
    Fc/Fc+)。在還原部份,除了錯合物2未觀察到還原峰外,錯合物1和3還原在HDPA配位子上
    (-1.923V for 1、-1.759V for 3 vs. Fc/Fc+),而錯合物4則還原在Q配位子上
    (-1.410V, -1.645V, -1.888V)。

    The research performed in this work constitutes two major parts.
    The first section involves photophysical and electrochemical properties of
    six new cyclometalated rhodium(III) complexes. Six new cyclometalated
    rhodium(III) complexes of the formula [Rh(ppy)2(L)], ppy = 2-phenylpyridine
    and L = 2,2'-dipyridylamine (HDPA) (1), deprotonated form of
    2,2'-dipyridylamine (DPA) (2), 2,2'-dipyridylketone (dpk) (3),
    acetyl acetone (acac) (4), 2,2'-bipyrimidine (bpym) (5), and
    2,3-di-pyridin-2-yl-pyrazine (dpp) (6) have been synthesized and
    subjected to X-ray diffraction crystal structural, photophysical and
    electrochemical studies. Density functional theory (DFT) calculations
    have also been performed to get rationalizations of the optical orbitals
    and redox orbitals concerning photophysical and electrochemical data.
    Complexes 1 and 4 show triplet ligand centered (3LC) [pi-pi*(ppy)]
    phosphorescence only at 77K (460 nm for complex 1 and 462 nm for complex 4).
    Similar to complexes 1 and 4, the complex 2 also displays triplet ligand
    centered (3LC) [Pi-pi*(DPA)] phosphorescence only at 77 K (480 nm) Whereas,
    complexes 3, 5, and 6 exhibit triplet ligand-to-ligand charge transfer (3LLCT)
    [pi(ppy)-pi*(dpk, bpym, or dpp)] phosphorescence at 77K (520 nm for
    complex 3; 510 nm for complex 5; 506 nm for complex 6 ) and at room
    temperature (555 nm for complex 3 and 5; 551 nm for complex 6).
    All rhodium(III) complexes have similar irreversible oxidation potentials
    that are assigned as oxidation at ppy ligand (+1.115 V for complex 1;
    +1.191 V for complex 3; +0.733 V for complex 4; +1.185 V for complex 5;
    +1.182 V for complex 6 vs. Fc/Fc+) except the complex 2 has quasi-reversible
    oxidation of potential at +0.081 V vs. Fc/Fc+ which is ascribed to oxidation
    at DPA ligand. However, these rhodium complexes exhibit different
    characteristics in reduction processes: irreversible for complex 1 at
    -1.853 V and reversible for complexes 3, 5, and 6 at -1.308 V, -1.510 V,
    and -1.532 V, respectively, that are attributed to reduction at N^N ligands
    (HDPA, dpk, bpym, and dpp).

    The second part is focused on bis-cyclometalated iridium(III) complexes
    containing 2,2'-dipyridylamine (HDPA) or deprotonated form of
    2,2'-dipyridylamine (DPA). The synthesis, X-ray crystal structure,
    luminescent and electrochemical properties of four new cyclometalated
    iridium(III) complexes, [Ir(mppz)2(HDPA)][PF6] (1), [Ir(mppz)2(DPA)] (2),
    [Ir(pba)2(HDPA)][PF6] (3), and [Ir(Q)2(HDPA)][PF6] (4) where mppz =
    3-methy-l-phenylpyrazole, pba = 4-(2-pyridyl)benzaldehyde, Q =
    2,3-diphenylquinoxaline, are reported. DFT calculations have also been
    performed to verify the optical orbitals and redox orbitals concerning
    photophysical and electrochemical data. Complex 1 shows the mixing of
    triplet metal-to-ligand charge-transfer and triplet ligand-to-ligand
    charge-transfer (3MLLCT) [dmppz2Ir→*(HPDA)] phosphorescence
    only at 77K (432 nm). Complex 2 displays triplet ligand centered (3LC)
    [pi-pi*(DPA)] phosphorescence both at 77 K (480 nm) and 298 K (499 nm).
    Whereas, complexes 3 and 4 exhibit mixing of triplet ligand-centered and
    triplet metal-to-ligand charge transfer (3LC/3MLCT) [dpi(Ir)-pi*(pba or Q)]
    phosphorescence at 77K (525 nm for complex 3; 624 nm for complex 4)
    and 298K (533 nm for complex 3; 625 nm for complex 4). All iridium(III)
    complexes have similar reversible or quasi-reversible oxidation potentials
    that are assigned as oxidation at d orbitals (+0.904 V for complex 1;
    +1.060 V for complex 3; +1.034 V for complex 4 vs. Fc/Fc+) except complex 2
    has reversible oxidation of potential at +0.100 V vs. Fc/Fc+ which is
    ascribed to oxidation at DPA ligand. However, these iridium(III) complexes
    exhibit different characteristics in reduction processes: irreversible
    for complexes 1 and 3 at -1.923 V and -1.759 V and reversible for complex 4
    at -1.410 V, -1.645 V, and -1.888 V, that are attributed to reduction at
    HDPA and Q, respectively. No reductive wave was seen for complex 2 in the
    solvent window.

    Acknowledgment…………………………………………………………………… I 摘要…………………………………………………………………………………II Abstract……………………………………………………………………………IV List of Tables……………………………………………………………………IX List of Figures………………………………………………………………… XI I.Photophysical and Electrochemical Properties of New Cyclometalated Complexes of Rhodium(III) Containing 2-phenylpyridine. The Experimental and Theoretical study 1. Introduction……………………………………………………………………1 2. Experimental Section…………………………………………………………6 2-1 Instrumentation……………………………………………………………… 6 2-2 Measurement Technique……………………………………………………… 9 2-3 Materials………………………………………………………………………11 2-4 Synthesis………………………………………………………………………11 3. Results…………………………………………………………………………18 3-1 Synthesis………………………………………………………………………18 3-2 Nuclear Magnetic Resonance Spectra…………………………………… 19 3-3 Mass Spectrometry……………………………………………………………19 3-4 Crystallographic Characterization………………………………………24 3-5 Absorption Spectra………………………………………………………… 34 3-6 Emission Spectra…………………………………………………………… 45 3-7 Electrochemistry…………………………………………………………… 60 3-8 Theoretical Approach……………………………………………………… 75 4. Discussion…………………………………………………………………… 85 4-1 Assignment of the Absorption Bands…………………………………… 85 4-2 Assignment of the Emission Bands……………………………………… 87 4-3 Correlative Studies of Redox and Optical Orbitals…………………89 5. Conclusions……………………………………………………………………92 6. References…………………………………………………………………… 93 II.Color Tuning of Luminescent Cyclometalated Iridium(III) Complexes Containing 2,2'-Dipyridylamine Ligand and Its Derivatives in Blue, Green and Red Phosphorescence 1. Introduction………………………………………………………………… 97 2. Experimental Section………………………………………………………102 2-1 Materials…………………………………………………………………… 102 2-2 Synthesis…………………………………………………………………… 102 3. Results and Discussion……………………………………………………107 3-1 Synthesis…………………………………………………………………… 107 3-2 Nuclear Magnetic Resonance Spectra……………………………………108 3-3 Mass Spectrometry………………………………………………………… 108 3-4 Crystallographic Characterization…………………………………… 111 3-5 Absorption Spectra…………………………………………………………116 3-6 Emission Spectra……………………………………………………………129 3-7 Electrochemistry……………………………………………………………141 3-8 Theoretical Approach………………………………………………………151 3-9 Comparison of the Emissive and Nonradiative States for Ir(III) complexes………………………………………………………… 158 4. Conclusions………………………………………………………………… 160 5. References……………………………………………………………………162 Supplementary Information…………………………………………………… 166

    I.Photophysical and Electrochemical Properties of New Cyclometalated
    Complexes of Rhodium(III) Containing 2-phenylpyridine. The Experimental
    and Theoretical study

    1.P. J. Steel, J. Organomet. Chem., 1991, 408, 395.
    2.F. O. Garces, K. A. King, R. J. Watts, Inorg. Chem., 1988, 27, 3464.
    3.C. Arz, P. S. Pregosin, C. Anklin, Magn. Reson. Chem., 1987, 25, 158.
    4.A. Zilian, U. Maeder, A. von Zelewsky, H. U. Gudel, J. Am. Chem. Soc.,
    1989, 111, 3855.
    5.U. Mäder, T. Jenny, A. von Zelewsky, Helv. Chim. Acta, 1986, 69, 1085
    6.S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc.,
    1984, 106, 6647.
    7.Y. Ohsawa, S. Sprouse, A. K. King, M. K. Dearmond, K. W. Hanck,
    R. J. Watts, J. Phys. Chem., 1987, 91, 1047.
    8.V. Balzani, F. Bolletta, M. Ciano, M. Maestri, J. Chem. Educ. 1983, 60,
    447.
    9.V. Balzani, F. Bolletta, Comments Inorg. Chem., 1983, 2, 211.
    10.P. H. Reveco, J. H. Medley, A. R. Garber, N. S. Bhacca, J. Sebin,
    Inorg. Chem., 1985, 24, 1096.
    11.E. C. Constable, J. M. Holmes, J. Organomet. Chem., 1986, 301, 203.
    12.D. Sandrini, M. Maestri, M. Ciano, U. Maeder, A. Von Zelewsky,
    Helv. Chim. Acta, 1990, 73, 1306.
    13.M. Maestri, D. Sandrini, V. Balzani, U. Maeder, A. von Zelewsky,
    Inorg. Chem., 1987, 26, 1323.
    14.F. Barigelletti, D. Sandrini, M. Maestri, V. Balzani, A. von Zelewsky,
    L. Chassot, P. Jolliet, U. Maeder, Inorg. Chem., 1988, 27, 3644.
    15.M. G. Colombo, A. Zilian, H. U. Güdel, J. Am. Chem. Soc., 1990, 112,
    4581.
    16.A. Zilian, H. U. Güdel, Inorg. Chem., 1992, 31, 830.
    17.C. Giesbergen, M. Glasbeek, J. Phys. Chem., 1993, 97, 9942.
    18.J. H. van Dimen, R. Hage, J. G. Haasnoot, H. E. B. Lempers, J. Reedijk,
    J. G. Vos, L. D. Cola, F. Barigelletti, V. Balzani, Inorg. Chem.,
    1992, 31, 3518.
    19.E. C. Constable, T. A. Leese, D. A. Tocher, Polyhedron, 1990, 9, 1613.
    20.S. Campagna, S. Serroni, A. Juris, M. Venturi, V. Balzani, New J. Chem.,
    1996, 20, 773.
    21.J. H. van Diemen, J. G. Haasnoot, R. Hage, J. Reedijk, J. G. Vos,
    Inorg. Chem., 1991, 30, 4038.
    22.G. Calogero, G. Giuffrida, S. Serroni, V. Ricevuto, S. Campagna,
    Inorg. Chem., 1995, 34, 541.
    23.J. L. Kisko, J. K. Barton, Inorg. Chem., 2000, 39, 4942.
    24.U. Maeder, A. von Zelewsky, H. Stoeckli-Evans, Helv. Chim. Acta,
    1992, 75, 1320.
    25.G. Frei, A. Zillan, A. Raselli, H. U. Güdel, H. Bürgi, Inorg. Chem.,
    1992, 31, 4766.
    26.D. Sandrini, M. Maestri, V. Balzani, U. Maeder, A. von Zelewsky,
    Inorg. Chem., 1988, 27, 2640.
    27.P. Didier, I. Ortmans, A. K. Mesmaeker, R. J. Watts, Inorg. Chem.,
    1993, 32, 5239.
    28.M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Güdel, Inorg. Chem.,
    1994, 33, 545.
    29.L. Ghizdavu, O. Lentzen, S. Schumm, A. Brokdorb, C. Moucheron,
    A. K. Mesmaeker, Inorg. Chem., 2003, 42, 1935.
    30.M. Maestri, D. Sandrini, V. Balzani, L. Chassot, P. Jolliet,
    A. von Zelewsky, Chem. Phys. Lett., 1985, 122, 375.
    31.P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Selbin,
    Inorg. Chem., 1985, 24, 4078.
    32.W. L. Huang, J. R. Lee, S. Y. Shi, C. Y. Tsai, Transit. Met. Chem.,
    2003, 28, 381.
    33.T. Matsumoto, R. A. Periana, D. J. Taube, H. Yoshida, J. Catal.,
    2002, 206, 272.
    34.J. N. Demas, G.N. Crosby, J. Phys. Chem., 1971, 75, 991.
    35.K. Nakamaru, Bull. Chem. Soc. Jpn., 1982, 55, 2697.
    36.C. Adamo and V. Barone, Chem., Phys. Lett., 1997, 274, 242.
    37.M. J. Frisch, et al., Gaussian 98 Revision A.11, Gaussian, Inc.,
    Pittsburgh, PA, 2001.
    38.R.E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys., 1998,
    109, 8218.
    39.R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Letters, 1996, 256, 454.
    40.M. E. Casida,C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys.,
    1998, 108, 4439.
    41.P. J. Hay, J. Phys. Chem. A, 2002, 106, 1634.
    42.M. Polson, S. Fracasso, V. Bertolasi, M. Ravaglia and F. Scandola,
    Inorg. Chem. 2004, 43, 1950.
    43.F. Weigert, Verh. Dtsch. Phys. Ges., 1920, 1, 100.
    44.S. I. Vavilov, V. L. Levshin, Z. Phys., 1923, 16, 136.
    45.F. Perrin, J. Phys. Radium. 1926, 7, 390.
    46.A. Jablonski, Z. Phys., 1936, 96, 236.
    47.A. C. Albrecht, W. T. Simpson, J. Am. Chem. Soc., 1955, 77, 4454.
    48.A. C. Albrecht, J. Mol. Spectrosc., 1961, 6, 84.
    49.L. J. Andrews, Inorg. Chem., 1978, 17, 3180.
    50.J. T. Merrill, M. K. DeArmond, J. Am. Chem. Soc., 1979, 101, 2045.
    51.M. C. Tseng (曾梅菁), doctoral dissertation of Department of Chemistry,
    National Cheng Kung University, 2006.
    52.M. C. Tseng, W. L. Su, Y. C. Yu, S. P. Wang, W. L. Huang,
    Inorg. Chim. Acta, 2006, 359, 4144.
    53.T. J. Durnick, A. H. Kalantar, J. Chem. Phys., 1977, 66, 1914.
    54.M. Maestri, M. Balzani, C. Deusche.-Cornioley, A. Zelewsky,
    Adv. Photochem., 1992, 17, 1.
    55.D. E. Morris, Y. Ohsawa, D. P. Segers, M. K. Dearmond, Inorg. Chem.,
    1984, 23, 3010.
    56.G. Giuffrida, G. Guglielmo, V. Ricevuto, S. Campagna, M. Ciano,
    Inorg. Chim. Acta, 1992, 194, 23.
    57.W. L. Huang (黃文亮), doctoral dissertation of Department of Chemistry,
    North Carolina State University, 1980.
    58.K. K. -W. Lo, C. -K. Chung, N. Zhu, Chem. Eur. J., 2003, 9, 475.
    59.K. K. -W. Lo, C. -K. Li, K. -W. Lau, N. Zhu, Dalton Trans., 2003, 4682.
    60.Q. Zhao, S. Liu, C. Wang, M. Yu, L. Li, F. Li, T. Yi, C. Huang,
    Inorg. Chem. 2006, 45, 6152.
    61.M. Busby, P. Matousek, M. Towrie, Lan P. Clark, M. Motevalli,
    F. Hartl, Vlček, A., Jr., Inorg. Chem., 2004, 43, 4523.

    II.Color Tuning of Luminescent Cyclometalated Iridium(III) Complexes
    Containing 2,2'-Dipyridylamine Ligand and Its Derivatives in Blue,
    Green and Red Phosphorescence

    1.S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee,
    C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc.,
    2001, 123, 4304.
    2.S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwang, I. Tsyba,
    M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem., 2001, 40, 1704.
    3.A. B. Tamayo, B. D. Alleyne, P. Djurovich, S. Lamansky, I. Tsyba,
    N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377.
    4.J. P. Duan, P. P. Sun, C. H. Cheng, Adv. Mater., 2003, 15, 224.
    5.M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley,
    M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151.
    6.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest,
    Appl. Phys. Lett., 1999, 75, 4.
    7.D. F. O'Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest,
    Appl. Phys. Lett., 1999, 74, 442.
    8.V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov,
    Y. Wang, Chem. Commun., 2001, 1494.
    9.C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett., 1987, 51, 913.
    10.I. D. Parker, J. Appl. Phys., 1994, 75, 1656.
    11.G. Hughes, M. R. Bryce, J. Mater. Chem., 2005, 15, 94.
    12.S. R. Forrest, Nature, 2004, 428, 911.
    13.N. R. Armstrong, R. M. Wightman, E. M. Gross, Annu. Rev. Phys. Chem.,
    2001, 52, 391.
    14.L. Edman, M. A. Summers, S. K. Buratto, A. Heeger, J. Phys. Rev. B,
    2004, 70, 115212.
    15.J. Slinker, D. Bernards, P. L. Houston, H. D. Abruna, S. Bernhard,
    G. G. Malliaras, Chem. Commun., 2003, 2392.
    16.J. Lee, D. Yoo, M. F. Rubner, Chem. Mater., 1997, 9, 1710.
    17.E. S. Handy, A. J. Pal, M. F. Rubner, J. Am. Chem. Soc., 1999, 121, 3525.
    18.H. Rudmann, S. Shimada, M. F. Rubner, J. Am Chem. Soc., 2002, 124, 4918.
    19.N. Takane, W. Gaynor, M. F. Rubner, Polym. Prepr. Am. Chem. Soc.,
    Div. Polym. Chem., 2004, 45, 349.
    20.H. Rudmann, S. Shimada, M. F. Rubner, J. Appl. Phys., 2003, 94, 115.
    21.H. Rudmann, M. F. Rubner, J. Appl. Phys., 2001, 90, 4338.
    22.H. Rudmann, S. Shimada, M. F. Rubner, D. W. Oblas, J. E. Whitten,
    J. Appl. Phys., 2002, 92, 1576.
    23.G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. J. Bard,
    J. Am. Chem. Soc., 2003, 125, 6272.
    24.F. G.. Gao, A. J. Bard, Chem. Mater., 2002, 14, 3465.
    25.M. Buda, G. Kalyuzhny, A. J. Bard, J. Am. Chem. Soc., 2002, 124, 6090.
    26.F. G.. Gao, A. J. Bard, J. Am. Chem. Soc., 2000, 122, 7426.
    27.F. F. Fan, A. J. Bard, J. Phys. Chem. B, 2003, 107, 1781.
    28.C. Liu, A. J. Bard, J. Am. Chem. Soc., 2002, 124, 4190.
    29.S. Bernhard, J. A. Barron, P. L. Houston, H. D. Abruna,
    J. L. Ruglovsky, X. Gao, G. G. Malliaras, J. Am. Chem. Soc.,
    2002, 124, 13624.
    30.S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruna, Adv. Mater.,
    2002, 14, 433.
    31.H. S. Joshi, R. Jamshidi, Y. Tor, Angew. Chem., Int. Ed., 1999, 38, 2772.
    32.H. Meng, W. Huang, J. Org. Chem., 2000, 65, 3894.
    33.M. K. Nazeeruddin, R. H-Baker, D. Berner, S. Rivier, L. Zuppiroli,
    M. Graetzel, J. Am. Chem. Soc., 2003, 125, 8790.
    34.Wei. Lu, B. –X. Mi, M. C. W. Chan, Z. Hui, C. –M. Che, N. Zhu,
    S. –T. Lee, J. Am. Chem. Soc., 2004, 126, 4958.
    35.C. Adachi, C. Kwong, P. Diurovich, V. Adamovich, M. A. Baldo,
    M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
    36.J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. H. Ho, R. Bau,
    M. E. Thompson, Polyhedron, 2004, 23, 419.
    37.K. K.-W. Lo, C.-K. Chung, N. Zhu, Chem. Eur. J., 2003, 9, 475.
    38.G. L. Zhang, Z. H. Liu, H. Q. Guo, Chin. Chem. Lett., 2004, 15, 1349.
    39.M. C. Tseng, W. L. Su, Y. C. Yu, S. P. Wang, W. L. Huang,
    Inorg. Chim. Acta, 2006, 359, 4144.
    40.C. H. Yang, S. W. Li, Y. Chi, Y. M. Cheng, Y. S. Yeh, P. T. Chou,
    G. H. Lee, C. H. Wang, C. F. Shu, Inorg. Chem., 2005, 44, 7770.
    41.T. J. Durnick, A. H. Kalantar, J. Chem. Phys., 1977, 66, 1914.
    42.M. G. Columbo, H. U. Güdel, Top. Curr. Chem., 1994, 171, 143.
    43.J. A. King, R. J. Watts, J. Am. Chem. Soc., 1987, 109, 1589.
    44.F. O. Graces, J. A. King, R. J. Watts, Inorg. Chem., 1988, 27, 3464.
    45.K. K. Lo, J. S. Chan, C. Chung, V. W. Tsang, N. Zhu, Inorg. Chim. Acta,
    2004, 357, 3109.
    46.F. Neve, M. La Deda, A. Crispini, A. Bellusci, F. Puntoriero,
    S. Campagna, Organometallics, 2004, 23, 5856.
    47.A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba,
    R. Bau, M. E. Thompson, Inorg. Chem., 2005, 44, 8723.
    48.A. P. Wilde, R. J. Watts, J. Phys. Chem., 1991, 95, 622.
    49.P. Didier, I. Ortmans, A. Kirsch-De Mesmaeker, R. J. Watts,
    Inorg. Chem., 1993, 32, 5239.
    50.I. Ortmans, P. Didier, A. Kirsch-De Mesmaeker, Inorg. Chem., 1995, 34,
    3695.
    51.I. M. Dixon, J. –P. Collin, J. –P. Sauvage, L. Flamigni, S. Encinas,
    F. Barigelletti, Chem. Soc. Rev., 2000, 29, 385.
    52.F. M. Hwang, H. –Y. Chen, P –S Chen, C. –S. Liu, Y. Chi, C. –F. Shu,
    F. –I. Wu, P. –T. Chou, S. –M. Peng, G.. –H. Lee, Inorg. Chem.,
    2005, 44, 1344.
    53.J.-K. Yu, Y.-H. Hu, Y.-M. Cheng, P.-T. Chou, S.-M. Peng, G.-H. Lee,
    A. J. Carty, Y.-L. Tung, S.-W. Lee, Y. Chi, C.-S. Liu, Chem.-Eur. J.,
    2004, 10, 6255.
    54.P.-C. Wu, J.-K. Yu, Y.-H. Song, Y. Chi, P.-T. Chou, S.-M. Peng,
    G.-H. Lee, Organometallics, 2003, 22, 4938.
    55.P. Coppo, E. A. Plummer, L. De Cola, Chem. Commun., 2004, 1774.
    56.T. H. Kwon, H. S. Cho, M. K. Kim, J. W. Kim, J. J. Kim, K. H. Lee,
    S. J. Park, I. S. Shin, H. Kim, D. M. Shin, Y. K. Chung, J. I. Hong,
    Organometallic, 2005, 24, 1578.
    57.C. M. Flynn, Jr., J. N. Demas, J. Am. Chem. Soc., 1974, 96, 1960.
    58.M. C. Tseng (曾梅菁), doctoral dissertation of Department of Chemistry,
    National Cheng Kung University, 2006.
    59.D. E. Morris, Y. Ohsawa, D. P. Segers, M. K. Dearmond, Inorg. Chem.,
    1984, 23, 3010.
    60.T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau,
    M. E. Thompson, R. J. Holmes, S. R. Forrest, Inorg. Chem., 2005, 44, 7992.
    61.L. S. Forster, Coord. Chem. Rev., 2002, 227, 59.
    62.M. K. Brennaman, T. J. Meyer, J. M. Papanikolas, J. Phys. Chem. A,
    2004, 108, 9938.
    63.R. S. Lumpkin, E. M. Kober, L. A. Worl, Z. Murtaza, T. J Meyer,
    J. Phys. Chem., 1990, 94, 239.
    64.I. M. Dixon, J. –P. Collin, J. –P. Sauvage, L. Flamigni, S. Encinas,
    F. Barigelletti, Chem. Soc. Rev., 2000, 6, 385.
    65.G. C. Choi, J. E. Lee, N. G. Park, Y. S. Kim, Mol. Liq. Cryst.,
    2004, 424, 173.

    下載圖示 校內:2009-07-03公開
    校外:2010-07-03公開
    QR CODE