簡易檢索 / 詳目顯示

研究生: 林宏杰
Lin, Hung-Chieh
論文名稱: 氮化鎵系列發光二極體之靜電保護能力分析
Analysis of ESD Protection Ability on GaN-Based LEDs
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 89
中文關鍵詞: 靜電發光二極體
外文關鍵詞: ESD, LED
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們成功的研製不同成長條件及結構之氮化鎵系列發光
    二極體,並對元件量測後在發光及靜電保護上探討其差異原因。其中探討的元件有 (a)改變p型GaN成長壓力 (b)多重量子井之能障處摻雜不同濃度矽元素 (c)摻雜矽元素之多重量子井於能障處改變厚度 (d)改變n+-GaN之厚度等。
    當LED之p型氮化鎵結構以不同壓力成長時,LED在發光強度的表現
    上趨於相等,但在靜電保護能力則有所差異。對於p型氮化鎵在450torr下成長的LED,當靜電衝擊壓力達2.2kV時仍有70%的元件可正常運作。我們推測在不同成長壓力下,元件的阻值會隨之改變,而較低阻值將能較快分散電荷,降低元件損壞的機會。此外,我們也探討關於在多重量子井內之能障處摻雜矽元素所產生的變化。當改變其摻雜濃度時,發現矽濃度較高之LED其發光強度及靜電保護能力較佳,這是由於增加矽含量於多重量子井內之能障處可以增加量子井對於電洞之侷限能力並提高元件之電容值。而若改變其厚度,能障較厚者在發光強度及靜電保護效果都有較優異之表現。這被歸咎於改善電洞侷限能力及提高元件內部電容等。然而,對於改變多重量子井下層之n+-GaN厚度,在發光及靜電保護上並無明顯差異,顯示此結構對於元件之特性表現影響較小。

    Nitride based light emitting diodes have been successfully fabricated in this investigation. We measured the luminance and electrostatic discharge protection ability of the light emitting diodes. The topics include (a)p-type
    GaN layer with different growth pressure (b)MQW barriers with different Si-doped concentration (c)Si-doped MQW barriers with different thickness (d)n+-GaN layer with different thickness.
    We found light emitting diodes with different p-GaN layer growthpressure showed the same luminous intensity, but different discharge protection ability. The diode yield percentage of LEDs with 450torr p-GaN growth pressure was about 70% at 2.2kV ESD stress voltage. The good ESD
    protection ability was attributed to the lower resistance of LEDs. Furthermore,we also investigated the luminance and electrostatic discharge protection ability of LEDs with Si-doped MQW barriers. For the different Si doping
    concentration case, we found MQW barriers with higher Si concentration could enhance the light emission intensity and ESD protection ability. The results were ascribed by the excellent hole confinement and internal capacitance. For different Si-doped barrier thickness, we found the thicker MQW barrier would increase the luminous intensity and enhance the ESD protection ability which were imputed by the superior hole confinement and internal capacitance respectively. However we did not find the distinction in
    luminance and ESD protection ability by adjusting the n+
    -GaN layer thickness under MQWs.

    Contents Abstracts (Chinese)---------------------------------------------------------------------I Abstracts (English)-------------------------------------------------------------------III Acknowledgment----------------------------------------------------------------------V Contents--------------------------------------------------------------------------------VI Table Captions------------------------------------------------------------------------IX Figure Captions------------------------------------------------------------------------X Chapter 1. Introduction----------------------------------------------------------------------------1 1-1. The background of research and motivation----------------------------------1 1-2. Organization of this dissertation------------------------------------------------3 Chapter 2. Theory of The Study and Research---------------------------------8 2-1 LED knowledge--------------------------------------------------------------------8 2-1-1. Theorem of LED-------------------------------------------------------------8 2-1-2. EL-intensity------------------------------------------------------------------9 2-1-3. InGaN/GaN MQWs with Si-doped barrier-------------------------------9 2-1-4. Threading dislocations----------------------------------------------------10 2-1-5. Piezoelectric field effect--------------------------------------------------11 2-2 Electrostatic discharge-----------------------------------------------------------12 2-2-1. Electrostatic discharge (ESD) characteristics--------------------------12 2-2-2. Electro-static discharge simulator---------------------------------------13 2-3. LED device properties----------------------------------------------------------14 2-3-1. Series Resistance-----------------------------------------------------------14 2-3-2. Depletion width------------------------------------------------------------15 2-3-3. Apparent carrier concentration-------------------------------------------16 Chapter 3. Experiment Equipment and Fabrication Process--------------27 3-1. Experiment equipment----------------------------------------------------------27 3-1-1. Raman microscopy--------------------------------------------------------27 3-1-2. Emission microscope------------------------------------------------------28 3-1-3. Scanning electron microscope--------------------------------------------28 3-2. Experiment and measurement-------------------------------------------------29 3-2-1. Devices fabrication and Structure---------------------------------------29 3-2-2. Etching process-------------------------------------------------------------31 3-2-3. I-V & C-V measurement--------------------------------------------------31 3-2-4. O-E characteristics measurement----------------------------------------31 3-2-5. ESD protection voltage test-----------------------------------------------32 Chapter 4. Characteristics of LEDs with different growth pressure on p-GaN ------------------------------------------------------------------37 4-1. Introduction----------------------------------------------------------------------37 4-2. Experiment and analysis of LEDs with different growth pressure on p-GaN-----------------------------------------------------------------------------37 4-2-1. I-V Characteristics---------------------------------------------------------37 4-2-2. O-E Characteristics--------------------------------------------------------38 4-2-3. Raman spectra analysis----------------------------------------------------39 4-2-4. ESD protection voltage test-----------------------------------------------40 4-3. Summary--------------------------------------------------------------------------40 Chapter 5. Characteristics of LEDs with Si-doped barrier in MQWs----49 5-1. Introduction----------------------------------------------------------------------49 5-2. Experiment and analysis of LEDs with different Si-doped concentrationin MQW barriers---------------------------------------------------------------49 5-2-1. I-V and C-V characteristics-----------------------------------------------50 5-2-2. O-E Characteristics--------------------------------------------------------50 5-2-3. ESD protection voltage test-----------------------------------------------51 5-3. Experiment and analysis of LEDs with different Si-doped barrier thickness in MQWs-----------------------------------------------------------52 5-3-1. I-V and C-V characteristics-----------------------------------------------52 5-3-2. O-E Characteristics--------------------------------------------------------53 5-3-3. ESD protection voltage test-----------------------------------------------54 5-4. Experiment and analysis of LEDs with different NP + P-GaN thickness -----------------------------------------------------------------------------------54 5-4-1. I-V and C-V characteristics-----------------------------------------------54 5-4-2. O-E Characteristics--------------------------------------------------------55 5-4-3. ESD protection voltage test-----------------------------------------------55 5-5. Summary--------------------------------------------------------------------------55 Chapter 6. Conclusion and Future Work---------------------------------------69 6-1. Conclusion------------------------------------------------------------------------72 6-2. Future work----------------------------------------------------------------------73

    Chapter 1.
    [1] M. A. Khan, M. S. Shur, J. N. Kuzunia, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C” Appl. Phys. Lett. Vol.66, 1083 (1995)
    [2] O. Aktas, Z. F. Fan, S. N. Mmohammand, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors” Appl. Phys. Lett. Vol. 69, 3872 (1996)
    [3] H. Amano, N. Sawaki and I. Akasaki Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer” Appl. Phys. Lett. Vol. 48, pp.353-355 (1986)
    [4] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku and Yasunobu Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes” Jpn. J. Appl. Phys. 35, L74-L76 (1996)
    [5] Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa, Shin-ichi Nagahama,
    Takao Yamada, Takashi Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes” Jpn. J. Appl. Phys. 34, L1332-L1335 (1995)
    [6] Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting”, Journal of Display Technology, Vol. 3, No. 2 (2007)
    [7] T. Inoue, “Light emitting device”, Japanese Patent H11-040848
    Chapter 2.
    [1] S. Ruvimov, Z. Liliental-Weber, T. Suski, J.W. Ager III, J.Washburn, J. Krueger, C. Kisielowski, E. R.Weber,H. Amano, and I. Akasaki, “Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire,” Appl. Phys. Lett., vol. 69, no. 7, pp. 990–992 (1996)
    [2] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN,” Appl. Phys. Lett., vol. 71, no. 7, pp. 921–923 (1996)
    [3] L. W. Wu, S. J. Chang, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Optical properties of Si-doped GaN”, Appl. Phys. Lett. Vol.38, pp.446 (2002)
    [4] T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, and S. Sakai, “Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures”, Appl. Phys. Lett. Vol.76, pp.1737 (2000)
    [5] M. Y. Ryu, Y. J. Yu, E. J. Shin, P. W. Yu, J. I. Lee, S. K. Yu, E. S. Oh, O. H. Nam, C. S. Sone, Y. J. Park, and T. I. Kim, Solid State Commun. 116, 675 (2000)
    [6] T. Deguchi, A. Shikanai, K. Torii, T. Sots, S. Chichibu, and S. Nakamura, “Luminescence spectra from InGaN multiquantum wells heavily doped with Si” Appl. Phys. Lett. vol.72, pp.3329 (1998)
    [7] Fiorentini, V; Bernardini, F; Della Sala, F, “Effects of macroscopic polarization in III-V nitride multiple quantum wells”, Phys. Rev. B, vol.60, no.12 (1999)
    [8] S. P. Sim, M. J. Robertson, and R. G. Plumb, “Catastrophic and latent damage in GaAlAs lasers caused by electrical transients”, J. Appl. Phys., vol. 55, pp.3950–3955 (1984)
    [9] T. Inoue, “Light-Emitting Devices,” Japanese Patent H11-040 848 (1999)
    [10] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Device Lett., vol. 24, pp. 129–131 (2003)
    [11] ESD Association Standard Test Method for electrostatic discharge sensitivity testing-Human Body Model (HBM) Component Level (ANSI/ESD5.1-2001)
    [12] N. C. Chen, W. C. Lien, Y. S.Wang, and H. H. Liu,”Capacitance-Voltage and Current-Voltage Measurements of Nitride Light-Emitting Diodes”, IEEE Trans on Elec. Dev. vol.54, no.12 (2007)
    Chapter 3.
    [1] H. J. Prk, C. Park, S. Yeo, S.W. Kang, M. Mastro, O. Kryliouk, and T. J. Anderson, “Epitaxial strain energy measurements of GaN on sapphire by Raman spectroscopy”, phys. stat. sol. (a) No.7, pp.2446–2449 (2005).
    [2] S. Mal, A. Singha, S. Dhara, A. Roy, “Raman measurements and stress analysis in gallium ion-implanted gallium nitride epitaxial layers on sapphire”, Thin Solid Films, 515, pp. 2798–2802 (2006)
    [3] M. Kazumura, I. Ohta, and I. Teramoto, “Feasibility of the LPE Growth of AlxGayIn1-x-yP on GaAs Substrates”, Jpn.J. Appl. Phys., Vol. 22, 654 (1983)
    [4] H. M. Manasevit, “single crystal gallium arsenide substrates insulating subtrates”, Appl. Phys. Lett., Vol. 12, 156 (1968)
    [5] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188 (1986)
    [6] T. Makimoto, Y. Yamauchi, N. Kobayashi, and Y. Horikoshi, “In Situ Optical Monitoring of the GaAs Growth Process in MOCVD”, Jpn. J. Appl. Phys. Vol.29, L207 (1990)
    Chapter 4.
    [1] H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, “Electrical Transport Properties of p-GaN”, Jpn. J. Appl. Phys. Vol.35 (Part 2) L282. (1996)
    [2] S.N. Mohammad, A.E. Botchkarev, A. Salvador, W. Kim, O. Aktas, H. Morkoc, Philos. Magn. B, 76, 131 (1997)
    [3] J. Neugebauer, C.G. Van de Walle, Mater. Res. Soc. Symp. Proc., 395, 645 (1996)
    [4] Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting”, Journal of Display Technology, Vol. 3, No. 2 (2007)
    [5] D.S. Li, H. Chen, H.B. Yu, H.Q. Jia, Q. Huang, J.M. Zhou, “Effects of reactor pressure on GaN-based light-emitting diodes grown on a-plane sapphire substrates”, J. Crystal Growth., 267, pp.395–399 (2004)
    [6] Harima, H; Sakashita, H; Inoue, T, “Electronic properties in doped GaN studied by Raman scattering”, Appl. Phys. Lett. Vol.73, 2000-2002 (1998)
    [7] H. Tokunaga_, A. Ubukata, Y. Yano, A. Yamaguchi, N. Akutsu, T. Yamasaki, K. Matsumoto, “Effects of growth pressure on AlGaNand Mg-doped GaN grown using multiwafer metal organic vapor phase epitaxy system”, J. Crystal Growth., 272, pp.348–352 (2004)
    [8] Eiting, CJ; Grudowski, PA; Dupuis, RD, “Growth of low resistivity
    p-type GaN by metal organic chemical vapour deposition”, Elec. Lett., vol. 33, pp. 1987-1989 (1997)
    Chapter 5.
    [1] S. Ruvimov, Z.Liliental-Weber, T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, “Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire”, Appl. Phys. Lett., 69, 990 (1996)
    [2] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical properties of Si-doped GaN”, Appl. Phys. Lett., 71, 921 (1996)
    [3] P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lamber, and R. D.Dupuis, “Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 71, 1537 (1997)
    [4] H. Hung, K. T. Lam, S. J. Chang, C. H. Chen, H. Kuan, and Y. X. Sun, “InGaNOGaN Multiple-Quantum-Well LEDs with Si-Doped Barriers”, J. Elec. Chem. Soc., Vol. 155, pp. H455-H458 (2008)
    [5] Eun-Hyun Park,a_ David Nicol Hun Kang, and Ian T. Ferguson, Soo-Kun Jeon Joong-Seo Park and Tae-Kyung Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode”, Appl. Phys. Lett., 90, 031102 (2006)
    [6] Fiorentini, V; Bernardini, F; Della Sala, F, “Effects of macroscopic polarization in III-V nitride multiple quantum wells”, Phys. Rev. B, Vol.60, No.12 (2009)
    [7] Soo-Kun Jeon, Jae-Gab Lee, Eun-Hyun Park, Jin Jang, Jae-Gu Lim, Seo-Kun Kim, and Joong-Seo Park, “The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties”, Appl. Phys. Lett., 94, 131106 (2009)
    [8] J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, “Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes”, Appl. Phys. Lett., 93, 021102 (2008)
    Chapter 6.
    [1] Haratizadeh, H; Monemar, B; Paskov, PP, “Photoluminescence study of Si-doped GaN/Al0.07Ga0.93N multiple quantum wells with different dopant position”, Appl. Phys. Lett. Vol.84, pp.5071-5073 (2004)
    [2] Meneghini, M; Trevisanello, LR; Zehnder, U, “High-temperature degradation of GaN LEDs related to passivation”, IEEE Trans. Elec. Dev., Vol.53, pp. 2981-2987 (2006)
    [3] Meneghini, M; Trevisanello, LR; Zehnder, U, “A review on the reliability of GaN-based LEDs”, IEEE Trans. Elec. Dev., Vol.8, pp. 323-331 (2008)
    [4] Bourget, CM, “An Introduction to Light-emitting Diodes”, HORTSCIENCE., Vol.43, pp. 1944-1946 (2008)
    [5] Fan, BF; Wu, H; Zhao, Y, “Thermal Study of High-Power Nitride-Based Flip-Chip Light-Emitting Diodes”, IEEE Trans. Elec. Dev., Vol.55, pp. 3375-3382 (2008)

    下載圖示 校內:立即公開
    校外:2009-07-13公開
    QR CODE