簡易檢索 / 詳目顯示

研究生: 黃滿旗
Huang, Man-Chi
論文名稱: 探討導眠靜對於MA-10小鼠萊氏腫瘤細胞之細胞凋亡機制研究
The Mechanism of Midazolam on Mouse Leydig Tumor Cell Apoptosis
指導教授: 黃步敏
Huang, Bu-Miin
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 51
中文關鍵詞: 導眠靜萊氏細胞粒線體路徑細胞自噬內質網壓力PKC和細胞死亡
外文關鍵詞: Midazolam (DormicumR), Leydig cell, mitochondrial pathway, autophagy, ER stress, PKC and Cell death
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Midazolam被廣泛使用作為鎮靜麻醉誘導劑,它是一種衍生於苯二氮卓類的藥物。在之前的研究,我們發現midazolam是藉由通過PKA和PKC途徑,再經由PBR和StAR proteins的影響,引起MA-10小鼠Leydig cell類固醇的產量增加。此外,在較高劑量的midazolam則會引起的MA-10細胞的膜出泡,引發在細胞的死亡的現象。之前研究我們已經發現,midazolam能刺激凋亡蛋白酶(caspase)和抑制絲裂原活化蛋白激酶(MAPK);而midazolam也會抑制Akt的途徑誘導MA-10細胞凋亡。在本研究中,我們想進一步調查midazolam詳細機制,我們也推測,midazolam誘導MA-10細胞凋亡藉由通過粒線體途徑。我們觀察到內生性淍亡途徑蛋白,促使MA-10細胞死亡,我們將重點放在細胞凋亡、細胞自噬的途徑、內質網壓力途徑和PKC路徑相關蛋白的表達。結果顯示,midazolam可誘導內生性淍亡途徑活化,包括增加Bax和細胞色素C蛋白的表達及LC3II蛋白,但降低Bid蛋白的表達。Midazolam處理課磷酸化的Akt和磷酸化的mTOR蛋白質的表達皆下降。這些數據表示,midazolam處理MA-10細胞可以激活內生性淍亡途徑與促進細胞自噬現象。此外,midazolam處理後誘導裂解caspase-7, -12和增加磷酸化的PKC表現, 但卻降低p53蛋白的表達。這些結果說明,midazolam處理MA-10細胞後,可能激活內質網壓力和PKC途徑誘導凋亡。
    其他自噬相關蛋,ER壓力途徑蛋白; ATF6,XPB1和eIF2α,以及不同的PKC亞型蛋白表達改變受midazolam處理。總結來說是midazolam可以活化凋亡途徑,造成內質網壓力上升,和細胞自噬的現象與抑制PKC路徑繼而去誘導MA-10細胞凋亡。

    Midazolam is widely used as sedative anesthetic induction agent, and it is a derivative from benzodiazepine drug. In previous study, we have found that midazolam could induce steroidogenesis in MA-10 mouse Leydig cells via PKA and PKC pathways along with the expression of PBR and StAR proteins1. In addition, midazolam at higher dosages induced rounding-up, membrane blebbing, and then cell death phenomenon in MA-10 cells. In fact, we have found that midazolam could stimulate caspase and MAPK, but inhibit Akt, pathways to induce apoptosis in MA-10 cells. In the present study, we would like to further investigate the detail mechanism activated by midazolam in MA-10 cells, and will focus on the apopototic pathway-, autophage pathway-, ER strees pathway-, and PKC pathway-related protein expressions. The results showed that midazolam induced the expression of Bax, cytochrome C and Light Chain 3 II (LC3II) proteins, but decreased the expression of Bid, phosphor-Akt and phosphor-mTOR proteins. These data illustrated that midazolam could activate intrinsic apopototic pathway plus autophagy in MA-10 cells. Moreover, midazolam treatment induced the cleavage of caspase-7,-12 and the phosphorylations of PKC, but decreased the expression of p53. These results demonstrated that midazolam might activate ER stress and PKC pathways to induce MA-10 cell death. We also hypothesized that midazolam could induce apoptosis via the mitochondrial pathway in MA-10 cell. We observated that the expressions of intrinsic apoptotic pathway proteins, other autophagy-related proteins, ER stress pathway-related proteins; activating transcription factor 6 (ATF6), X box-binding protein 1 (XBP1), eukaryotic translation initiator factor 2α (eIF2α), and different isoforms of PKC proteins were changed by treatment of midazolam. In conclusion, midazolam could activate apoptotic pathway, ER stress pathway, PKC pathway with autophage involvement to induce MA-10 cell apoptosis.

    TABLE OF CONTENTS ABSTRACTS Chinese abstract-----------------------------------------------------------------------------I English abstract----------------------------------------------------------------------------II ACKNOWLEDGEMENTS-----------------------------------------------------------------IV TABLE OF CONTENTS---------------------------------------------------------------------V LIST OF FIGURES-------------------------------------------------------------------------VIII INTRODUCTION----------------------------------------------------------------------------01 MATERIALS AND METHODS Chemicals----------------------------------------------------------------------------------05 Cell Culture--------------------------------------------------------------------------------06 Morphology Observation----------------------------------------------------------------06 MTT Viability Test-----------------------------------------------------------------------06 Immunofluorescent Staining. -----------------------------------------------------------07 Protein Extraction and Western Blotting Analysis-----------------------------------07 Mitochondrial Protein Isolation---------------------------------------------------------08 Statistical Analysis------------------------------------------------------------------------08 RESULTS Effects of midazolam on morphological change in M-10 mouse Leydig tumor cells.- ---------------------------------------------------------------------------------------------09 Effect of midazolam on cell viability in MA-10 mouse Leydig tumor cells.---10 Effect of midazolam on the expression of Bax protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------------11 Effect of midazolam on the expression of Bid protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------------12 Effect of midazolam on the expression of cytochrome C protein in MA-10 mouse Leydig tumor cells. ----------------------------------------------------------------------13 Effect of midazolam on the expression of LC3II protein in MA-10 mouse Leydig tumor cells. --------------------------------------------------------------------------------14 Midazolam increases autophagyosome formation in MA-10 cells.----------------15 Effect of midazolam on the expression of Atg5-12 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------16 Effect of midazolam on the expression of Akt protein in MA-10 mouse Leydig tumor cells. ---------------------------------------------------------------------------------------17 Effect of midazolam on the expression of mTOR protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------18 Effect of midazolam on the expression of caspase-12 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------19 Effect of midazolam on the expression of caspase-7 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------20 Effect of midazolam on the expression of ATF6 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------21 Effect of midazolam on the expression of eIF2α protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------22 Effect of midazolam on the expression of XBP1 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------23 Effect of midazolam on the expression of CHOP protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------24 Effect of midazolam on the expression of p-PKC protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------25 Effect of midazolam on the expression of p53 protein in MA-10 mouse Leydig tumor cells. -------------------------------------------------------------------------------------26 DISCUSION---------------------------------------------------------------------------------27 REFERENCES-----------------------------------------------------------------------------48

    Atan Gross, J.M.M.a.S.J.K. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes & development.
    Badiola, N., Penas, C., Minano-Molina, A., Barneda-Zahonero, B., Fado, R., Sanchez-Opazo, G., Comella, J.X., Sabria, J., Zhu, C., Blomgren, K., et al. (2011). Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell death & disease 2, e149.
    Billen, L.P., Shamas-Din, A., and Andrews, D.W. (2008). Bid: a Bax-like BH3 protein. Oncogene 27 Suppl 1, S93-104.
    Bluwstein, A., Kumar, N., Leger, K., Traenkle, J., Oostrum, J., Rehrauer, H., Baudis, M., and Hottiger, M.O. (2013). PKC signaling prevents irradiation-induced apoptosis of primary human fibroblasts. Cell death & disease 4, e498.
    Boyer, A., Paquet, M., Lague, M.N., Hermo, L., and Boerboom, D. (2009). Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumor of the testis. Carcinogenesis 30, 869-878.
    CE, B., P, F., SW, T., F, L., GP, M., DO, T., J, P., A, S.A., GS, S., and DR, G. (2012). <Mitochondrialpathway of apoptosis is ancestral in metazoans..pdf>. Proc Natl Acad Sci US A.
    Choudhury, S., Bhootada, Y., Gorbatyuk, O., and Gorbatyuk, M. (2013). Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell death & disease 4, e528.
    Cosentino-Gomes, D., Rocco-Machado, N., and Meyer-Fernandes, J.R. (2012). Cell Signaling through Protein Kinase C Oxidation and Activation. International journal of molecular sciences 13, 10697-10721.
    Dalton, L.E., Clarke, H.J., Knight, J., Lawson, M.H., Wason, J., Lomas, D.A., Howat, W.J., Rintoul, R.C., Rassl, D.M., and Marciniak, S.J. (2013). The endoplasmic reticulum stress marker CHOP predicts survival in malignant mesothelioma. British journal of cancer 108, 1340-1347.
    Dou, Y., Li, Y., Chen, J., Wu, S., Xiao, X., Xie, S., Tang, L., Yan, M., Wang, Y., Lin, J., et al. (2013). Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7. Oncology letters 5, 1010-1016.
    Eisenberg-Lerner, A., Bialik, S., Simon, H.U., and Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell death and differentiation 16, 966-975.
    Esteve, J.M., and Knecht, E. (2011). Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World journal of biological chemistry 2, 232-238.
    Fridman, J.S., and Lowe, S.W. (2003). Control of apoptosis by p53. Oncogene 22, 9030-9040.
    Gagliostro, V., Casas, J., Caretti, A., Abad, J.L., Tagliavacca, L., Ghidoni, R., Fabrias, G., and Signorelli, P. (2012). Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. The international journal of biochemistry & cell biology 44, 2135-2143.
    Gonzalez-Guerrico, A.M., Meshki, J., Xiao, L., Benavides, F., Conti, C.J., and Kazanietz, M.G. (2005). Molecular Mechanisms of Protein Kinase C-induced Apoptosis in Prostate Cancer Cells. Biochemistry and Molecular Biology.
    Grassilli, E., Narloch, R., Federzoni, E., Ianzano, L., Pisano, F., Giovannoni, R., Romano, G., Masiero, L., Leone, B.E., Bonin, S., et al. (2013). Inhibition of GSK3B Bypass Drug Resistance of p53-Null Colon Carcinomas by Enabling Necroptosis in Response to Chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research.
    Guo Ben Chang, Y.H.X. (2001). <Bcl-2 over-expression and activation of protein kinase C suppress the Trailinduced apoptosis in Jurkat T cells.pdf>. Cell research.
    Heath-Engel, H.M., Chang, N.C., and Shore, G.C. (2008). The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family. Oncogene 27, 6419-6433.
    Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews Molecular cell biology 13, 89-102.
    J. G. Reves, M.D., Robert J. Fragen, M.D., H. Ronald Vinik, M.D., and David J. Greenblatt, M.D. (1985). Midazolam: Pharmacology and Uses. Anestliesiology.
    Jiang, Q., Yeh, S., Wang, X., Xu, D., Zhang, Q., Wen, X., Xia, S., and Chang, C. (2012). Targeting androgen receptor leads to suppression of prostate cancer via induction of autophagy. The Journal of urology 188, 1361-1368.
    Kato, H., Katoh, R., and Kitamura, M. (2013). Dual Regulation of Cadmium-Induced Apoptosis by mTORC1 through Selective Induction of IRE1 Branches in Unfolded Protein Response. PloS one 8, e64344.
    Ke, F., Bouillet, P., Kaufmann, T., Strasser, A., Kerr, J., and Voss, A.K. (2013). Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell death & disease 4, e650.
    Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., Kaufman, R.J., Kominami, E., and Momoi, T. (2007). ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell death and differentiation 14, 230-239.
    Lamkanfi, M., Kalai, M., and Vandenabeele, P. (2004). Caspase-12: an overview. Cell death and differentiation 11, 365-368.
    Lin, J.F., Tsai, T.F., Liao, P.C., Lin, Y.H., Lin, Y.C., Chen, H.E., Chou, K.Y., and Hwang, T.I. (2013). Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis 34, 406-414.
    Liu, Y., Adachi, M., Zhao, S., Hareyama, M., Koong, A.C., Luo, D., Rando, T.A., Imai, K., and Shinomura, Y. (2009). Preventing oxidative stress: a new role for XBP1. Cell death and differentiation 16, 847-857.
    Lowe, C.E., Dennis, R.J., Obi, U., O'Rahilly, S., and Rochford, J.J. (2012). Investigating the involvement of the ATF6alpha pathway of the unfolded protein response in adipogenesis. International journal of obesity 36, 1248-1251.
    Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & development 18, 3066-3077.
    Mario Ferrari, M.C.F.a.A.M.I. (1990). MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. Immunological Methods.
    Mizushima, N. (2004). Methods for monitoring autophagy. The international journal of biochemistry & cell biology 36, 2491-2502.
    Moldoveanu, T., Grace, C.R., Llambi, F., Nourse, A., Fitzgerald, P., Gehring, K., Kriwacki, R.W., and Green, D.R. (2013). BID-induced structural changes in BAK promote apoptosis. Nature structural & molecular biology 20, 589-597.
    Montero, J., Dutta, C., van Bodegom, D., Weinstock, D., and Letai, A. (2013). p53 regulates a non-apoptotic death induced by ROS. Cell death and differentiation.
    Ola, M.S., Nawaz, M., and Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and cellular biochemistry 351, 41-58.
    Oliver H. Lowry, N.J.R., A. (1951). <Protein measurement with the folin phenol reagent.pdf>. Biological Chemistry.
    Pino, S.C., O'Sullivan-Murphy, B., Lidstone, E.A., Thornley, T.B., Jurczyk, A., Urano, F., Greiner, D.L., Mordes, J.P., Rossini, A.A., and Bortell, R. (2008). Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell stress & chaperones 13, 421-434.
    Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology 8, 519-529.
    Sakaki, K., Wu, J., and Kaufman, R.J. (2008). Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. The Journal of biological chemistry 283, 15370-15380.
    Shih-Ya Hung, W.-P.H., Houng-Chi Liou and Wen-Mei Fu, (2009). Autophagy protects neuron from Aβ-induced cytotoxicity. Landes Bioscience.
    So EC, C.Y., Hsing CH, Poon PW, Leu SF, Huang BM (2010). The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicology letters 192, 169-178.
    Sun, J., Liu, Y., and Aballay, A. (2012). Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. EMBO reports 13, 855-860.
    Taghavi, M.S., Akbarzadeh, A., Mahdian, R., Azadmanesh, K., and Javadi, G. (2013). Cisplatin downregulates BCL2L12, a novel apoptosis-related gene, in glioblastoma cells. In vitro cellular & developmental biology Animal 49, 465-472.
    Tait, S.W., and Green, D.R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nature reviews Molecular cell biology 11, 621-632.
    Van Limbergen, J., Stevens, C., Nimmo, E.R., Wilson, D.C., and Satsangi, J. (2009). Autophagy: from basic science to clinical application. Mucosal immunology 2, 315-330.
    Vembar, S.S., and Brodsky, J.L. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nature reviews Molecular cell biology 9, 944-957.
    Verfaillie, T., Rubio, N., Garg, A.D., Bultynck, G., Rizzuto, R., Decuypere, J.P., Piette, J., Linehan, C., Gupta, S., Samali, A., et al. (2012). PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell death and differentiation 19, 1880-1891.
    W. Lee, D.H.K., J. H. Boo, Y. H. Kim, I.-S. Park and I. Mook-Jung (2005). ER stress-induced caspase-12 activation is inhibited by PKC in neuronal cells. Apoptosis.
    Walensky, L.D. (2013). Direct BAKtivation. Nature structural & molecular biology 20, 536-538.
    Wang, Y., and Qin, Z.H. (2013). Coordination of autophagy with other cellular activities. Acta pharmacologica Sinica 34, 585-594.
    Yang, H., Rudge, D.G., Koos, J.D., Vaidialingam, B., Yang, H.J., and Pavletich, N.P. (2013). mTOR kinase structure, mechanism and regulation. Nature 497, 217-223.
    Zimmermann, K.C. (2001). The machinery of programmed cell death. Pharmacology & therapeutics.
    Zimmermann, K.C., Bonzon, C., and Green, D.R. (2001). The machinery of programmed cell death. Pharmacology & therapeutics.

    下載圖示 校內:2018-09-03公開
    校外:2018-09-03公開
    QR CODE