| 研究生: |
陳泰盛 Chen, Tai-Sheng |
|---|---|
| 論文名稱: |
鉭-矽-氮奈米複合薄膜的微結構與機光電性質之研究 A study on the microstructure and mechanical-electrical-optoelectronic properties of Ta-Si-N nanocomposite thin films |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 奈米複合薄膜 、似非晶結構 、氮化鉭矽 、奈米壓痕 、熱穩定性 、奈米晶矽 、光激發光 |
| 外文關鍵詞: | Nanocomposite films, Quasi-amrphous, Ta-Si-N, Nanoindentation, Thermal stability, Si nanocrystals, Photoluminescence |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米複合薄膜具有獨特的特性,因此廣泛應用在機械、微電子、光電、能源、生醫等產業上。因此控制奈米複合薄膜的微結構與成份以達到所需的性質是相當重要的,所以了解奈米複合薄膜的製程、結構與性質之間的關係是值得深入研究。因此本研究主要利用濺鍍法製備不同堆疊結構的鉭矽氮奈米複合薄膜,並檢測其微結構、成份與特性。最後利用不同的材料分析儀器檢測奈米複合薄膜的微結構、相、成份、表面型貌、機械、電與光電性質。深入探討製程參數與熱退火溫度對奈米複合薄膜的之機械性質、熱穩定性、電與光電性質之間的關係,進一步開發奈米複合薄膜在產業上實際的應用。
本論文第一部份為鉭矽氮奈米複合薄膜的微結構、機械性質與熱穩定性之研究。有關機械性質的研究,將改變氮氣流量比與控制遮罩來製備不同結構的鉭矽氮奈米複合薄膜,探討奈米結構化對機械性質的影響。當矽/鉭功率比為2/3與氮氣流量比低於10%,以及利用遮罩控制且氮氣流量比20 %時,皆可由XRD及TEM驗證其微結構為似非晶結構,也就是奈米晶粒鑲嵌在非晶的基底的奈米複合結構。並由實驗證明似非晶的奈米複合結構具有較平整的表面型貌,以及可有效抵抗塑性變形,增加薄膜的機械性質,因此可應用在硬質披覆層上。而在熱穩定性與抗氧化能力之探討中,在矽/鉭功率比為2/1時,因矽成份的增加造成更多的離子與共價鍵結,使奈米複合薄膜具有較佳的熱穩定性、抗氧化能力及適合的機械性質以應用在銅製程中的擴散阻障層與抗氧化層上。本論文第二部份討論鉭矽氮奈米複合薄膜的電與光電性質,在矽/鉭功率比為3/2時,電阻率與電阻溫度係數將隨著增加氮氣流量比而增加,而且透過晶界散射模型的計算,在低氮氣流量比時,因為有較高的電子穿遂機率,使鉭矽氮薄膜具有較低的電阻率。因此在低氮氣流量比時,薄膜具有低電阻率與負電阻溫度係數,適合用在擴散阻層與薄膜電阻,而在高氮氣流量比時,則具有高的電阻溫度係數,適合用在感測器上。而在光電性質中,本論文提出創新可導電且發光的奈米複合薄膜概念及其發光機制的探討。單層低電阻率之鉭矽氮奈米複合薄膜,在3%氮氣流量比具有可見光範圍的光激發螢光現象,這是因為奈米晶粒鑲嵌在非晶基底的複合結構,所引起的量子侷限與發光中心效應。而低電阻率之多層矽/氮化矽/氮化鉭複合結構的薄膜,因為奈米晶粒以及界面的缺陷能態與基底中氮化矽的發光能態,使具有可見光範圍的光激發螢光現象,而且其發光強度隨著退火溫度提高而增加。因此創新的導電發光奈米複合薄膜有機會應用在光電元件上。
The nanocomposite thin films have been applied in the mechanical, microelectronic, optoelectronic, energy and biomaterial industry due to its unusual and excellent properties. Therefore, it is important to understand the relationship between processes, microstructures and properties of nanocomposite films. In this dissertation, the various Ta-Si-N nanocomposite thin films were deposited at different parameter by using reactive sputtering and the microstructure, crystalline phase, composition, surface morphology, mechanical, electrical, and optoelectronic properties of nanocomposite films were measured by various instruments. Effect of processing parameter and annealing temperature on the characteristics of nanocomposite thin films were investigated and to develop its new application.
In the first part, the mechanical property and thermal stability of co-sputtered Ta-Si-N nanocomposite films as function of nitrogen flow ratios and alternating shuttering were discussed. The quasi-amorphous microstructure with nanocrystalline grains embedded in an amorphous matrix which was observed below 10 FN2% and over 20 FN2% with alternating shutter at Si/Ta power ratio of 2/3. Moreover, the quasi-amorphous Ta-Si-N nanocomposite film with high hardness and smooth morphology can be achieved at low FN2% and Si/Ta power ratio of 2/3 for mechanical application. In terms of thermal stability of quasi-amorphous Ta-Si-N nanocomposite films at low FN2% were also discussed. The Ta-Si-N nanocomposite film at the Si/Ta power ratio of 2/1 could be good candidates for diffusion barrier in Cu interconnect and oxide barrier application with good thermal stability, oxidation resistance and proper mechanical property. In the second part, the electrical and optoelectronic characteristics of Ta-Si-N nanocomposite films were discussed. The resistivity and TCR of films were increased with increasing FN2% at Si/Ta power ratio of 3/2. The Ta-Si-N thin film at low FN2% according the grain boundary scattering model exhibits high electron transmission probability. Therefore, the films with lower FN2% have both low resistivity and degree of negative TCR which is favored for diffusion barrier and thin films resistor, while the film with higher FN2% shows a higher degree of negative TCR, which is potentially favored for thermal resistive sensors. In terms of optoelectronic properties, the novel conducting PL and mechanism of nanocomposite films were proposed and verified. For the effect of FN2% on the microstructure and PL behavior of single layer Ta-Si-N nanocomposite film, the most pronounced PL peak was observed at 3 FN2% due to the quantum confinement and luminescence center (QC/LC) effect of the nc-grains less than 6 nm dispersed in an amorphous matrix and related to the grain size, imperfections at boundary (/interface) and surrounding composition. For the effect of annealing temperature on the evolution of microstructure and PL behavior in the multilayer Si/Si-N/Ta-N film nanocomposite, due to the nc-Si, defect states in imperfections of interface between the Si:O and Si-N:O and the located state related to the mixed Si-O or Si-N bonds in Si-N:O layer to produce the visible PL and increasing temperature enhances the formation of more radiative recombination in the localized states of Si-O and Si-N bonds and nc-Si for the improved PL intensity. Therefore, the nanocomposite films with novel conducting PL should apply to the optoelectronic devices.
1. B .M. Novak, “Hybrid nanocomposite materials between inorganic glasses and organic polymer”, Advanced Materials 5, p. 422, 1993.
2. S. Zhang, D. Sun, Y. Q. Fu and H. J. Du, “Recent advance of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167, p. 113, 2003.
3. L. Pavesi, “Will silicon be the photonic material of the third millennium”, Journal of Physics: Condensed matter 15, p. R1169, 2003.
4. A. G. Cullis, L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon”, Nature 353, p. 335, 1991.
5. G. R. Lin, C. J. Lin and C. K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si-based LED with interfacial Si nano-pyramids”, Optical Express 15, p. 2555, 2007.
6. J. Warga, R. Li, S. N. Basu and L. D. Negro, “Electroluminescence from silicon rich nitride/ silicon superlattice structures”, Applied Physics Letter 93, p. 151116, 2008.
7. L. D. Negro, R. Li, J. Warga and S. N. Basu, “Sensitized erbium emission from silicon-rich nitride/ silicon superlattice structures”, Applied Physics Letter 92, p. 181105, 2008.
8. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon”, Nature 407, p. 358, 2000.
9. J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, “Silicon nanocrystals: Size matters”, Advanced Materials 17, p. 795, 2005.
10. K. Ma J. Y. Feng and Z .J. Zhang, “Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering”, Nanotechnology 17, p. 4650, 2006.
11. M. Xu, S. Xu, J. W. Chai, J. D. Long and Y. C. Ee, “Enhancement of visible photoluminescence in the SiNx films by SiO2 buffer and annealing”, Applied Physics Letter 89, p. 251904, 2006.
12. T. Creazzo, B. Redding, E. Marchena, J. Murakowski and D. W. Prather, “Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline- Si/SiO2 superlattice”, Journal of Luminescence 130, p. 631, 2010.
13. S. PalDey and S. C. Deevi, “Properties of single layer and gradient (Ti, Al) N coatings“, Materials Science Engineering A 361, p. 1, 2003.
14. S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, “Different approaches to superhard coatings and nanocomposites”, Thin Solid Films 476, p. 1, 2005.
15. H. Gleiter, “On the structure of grain boundaries in metals”, Materials Science Engineering 52, p. 91. 1982.
16. A. P. Alivisatos,” Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science 271, p. 933, 1996.
17. G. E. Dieter, “Mechanical Metallurgy”, 3rd ed., McGraw-Hill, New York, USA, 1986.
18. S. Veprek and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268, p. 64, 1995.
19. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size”, Thin Solid Films 297, p. 145, 1997.
20. J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp. 322, 2000.
21. J. Musil, R. Daniel, J. Soldan and P. Zeman, “Hard a-Si3N4/MeNx nanocomposite coatings with high thermal stability and high oxidation resistance”, Solid State Phenomena 127, p. 31, 2007.
22. S. Veprek, “New development in superhard coatings: the superhard nanocrystalline-amorphous composites”, Thin Solid Films 317, p. 449, 1998.
23. R. B. Barna, M. Adamik, J. Labar, L. Kover, J. Toth, A. Devenyi, and R. Manaila, “Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction”, Surface and Coatings Technology 125, p. 147, 2000.
24. S. Veprek, A. S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, p. 175, 2001.
25. H. Y. Zhao, Q. L. Fan, L. X. Song, T. Zhang, E. W. Shi, X. F. Hu, “Research status and development of superhard nanocomposite films”, Journal of Inorganic Materials 252, p. 3065, 2004.
26. R. Chandra, D. Kaur, A. K. Chawl, N. Phinichk , Z. H. Barber, “Texture development in Ti-Si-N nanocomposite thin films”, Materials Science and Engineering A 423, p. 111, 2006.
27. C. T. Guo, D. Lee, P. C. Chen, “Deposition of Ti-Si-N coatings by arc ion plating process”, Applied Surface Science 254, p. 3130, 2008.
28. S. J. Suresha, R. Bhide, V. Jayaram, and S. K. Biswas, “Processingm microstructure and hardness of TiN/ (Ti, Al) N multilayer coatings”, Materials Science and Engineering A 429, p. 252, 2006.
29. P. Rogland and J. C. Schuster, “Phase diagrams of ternary boron nitride and silicon nitride Systems”, 1st ed., ASM Internationals, Ohio, USA 1992.
30. H. Zeman, J. Musil and P. Zeman, “Physical and mechanical properties of sputtered Ta-Si-N films with a high (over 40 at. %) content of Si”, Jorunal of Vacuum Science and Technology A 22, p. 646, 2004.
31. P. Zeman, J. Musil, and R. Daniel, “High-temperature oxidation resistance of Ta-Si-N films with a high Si content”, Surface and Coatings Technology 200, p. 4091, 2006.
32. D. Pilloud, J. F. Pierson, P. Steyer, A. Mege, B. Stauder and P. Jacquot, “Use of silane for the deposition of hard and oxidation resistant Ti-Si-N coatings by a hybrid cathodic arc and chemical vapour process”, Materials Letters 61, p. 2506, 2007.
33. D. Pilloud, J. F. Pierson, M. C. Marco de Lucas and A. Cavaleiro, “Study of the structural changes induced by air oxidation in Ti-Si-N hard coatings”, Surface and Coatings Technology 202, p. 2413, 2008.
34. SIA, “International technology roadmap for semiconductor”, 2010.
35. S. P. Murarka, “Low dielectric constant materials for interlayer dielectric applications”, Solid State Technology 39, p. 83, 1996.
36. S. R. Willson, C. J. Tracy and J. L. Freeman, “Handbook of Multilevel Metallization for Integrated Circuits”, 1st ed., Noyes Publications, New Jersey, USA, 1993.
37. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, “Tantalum-based diffusion barriers in Si/Cu VLSI metallizations”, Journal of Applied Physics 70, p. 1369, 1991.
38. R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K. Wetzig, H. J. Engelmann, E. Zschech, H. Heuer and C. H. Wenzel, “Influence of nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion barriers“, Thin Solid Films 468, p. 183, 2004.
39. M. Oizumi, “Control of crystalline structure and electrical properties of TaSiN thin film formed by reactive RF-sputtering,” Japan Journal of Apply Physic 39, p. 1291, 2000.
40. J. O. Olowolafe, I. Rau, K. M. Unruh, C. P. Swann, Z. S. Jawad and T. Alford, “Effect of composition on thermal stability and electrical resistivity of Ta-Si-N films”, Thin Solid Films 365, p. 19, 2000.
41. M. A. Nicolet, “Diffusion barriers in thin films”, Thin Solid Films 52, p. 415, 1978.
42. K. H. Min; C. K. Chun and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as diffusion barrier for Cu metallization”, Journal of Vacuum Science and Technology B 14, p. 3263, 1996.
43. K. Holloway, P. M. Fryer, C. Cabral, J. M. Harper, P. J. Bailey and K. H Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions ”, Journal of Applied Physics 71, p. 5433, 1992.
44. T. Oku, E. Kawakami, M. Uekubo, M. Murakami, K. Takahiro and S. Yamaguchi, “Diffusion barrier property of TaN between Si and Cu”, Applied Surface Science 99, p. 265, 1996.
45. M. A. Nicolet and P. H. Giauque,”Highly metastable amorphous or near-amrophous ternary films (mictamict alloys)”, Microelectronic Engineering 55, p. 357, 2001.
46. Y. J. Lee, B. S. Suh, M. S. Kwon and C. O. Park, “Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection”, Journal of Applied Physics 85, p. 1927, 1999.
47. Q. T. Jaing, R. Faust, H. Lam, and J. Micha, “Investigation of Ta, TaN and TaSiN barriers for copper interconnects”, IEEE Interconnect Technology 99, p. 125, 1999.
48. C. Lee, and Y. H. Shin, “Ta-Si-N as a diffusion barrier between Cu and Si”, Materials Chemistry and Physics 57, p. 17, 1998.
49. E. Kolawa, J. M. Molarius, C. W. Nieh, and M. A Nicolet, “Amorphous Ta-Si-N thin films alloys as diffusion barrier in Al/ Si metallization”, Journal of Vacuum Science and Technology A 8, p. 3006, 1990.
50. J. S. Reid, E. Kolawa, R. P. Ruiz, and M. A. Nicolet, “Evaluation of amorphous (Mo, Ta, W)-Si-N diffusion barriers for Cu metallization”, Thin Solid Films 236, p. 319, 1993.
51. T. Hara, M. Tanaka, K. Sakiyama, S. Onishi, K. Ishihara and J. Kudo, “Barrier properties of oxygen diffusion in a TaSiN layer”, Japan Journal of Apply Physic 36, p. L893, 1997.
52. J. O. Olowolafe, I. Rau, K. M. Unruh, C. P. Swann, Z. S. Jawad, and T. Alford, “Effect of composition on thermal stability and electrical resistivity of Ta-Si-N films”, Thin Solid Films 365, p. 19, 2000.
53. M. Oizumi, K. Aoki, S. Hashimoto, S. Nemoto and Y. Fukuda, “Control of crystalline structure and electrical properties of TaSiN thin films formed by recative RF-sputtering”, Japan Journal of Apply Physic 39, p. 1291, 2000.
54. J. W. Nah, S. K. Hwang, and C. M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physics 62, p. 115, 2000.
55. J. W. Nah, W. S. Choi, S. K. Hwang, C. M. Lee, “Chemical state of (Ta, Si) N reactively sputtered coating on a high-speed steel substrate”, Surface and Coatings Technology 123, p. 1, 2000.
56. L. W. Lai and J. S. Chen, “Influence of Ta/ Si atomic ratio on the interdiffusion between TaSiN and Cu at elevated temperature, “Journal of Apply Physics 94, p. 5396, 2003.
57. R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K. Wetzig, H. J. Engelmann, E. Zschech, H. Heuer, C. Wenzel, “Influence of nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion barriers”, Thin Solid Films 468, p. 183, 2004.
58. H. Yan, L. Li, F. Y. Ho, M. H. Liang, J. S. Pan S. Xu and Z. Chen, “Formation and characterization of magnetron sputtered Ta-Si-N-O thin film”, Thin Solid Films 517, p. 5207, 2009.
59. B. Zhu, R. J. Asaro, P. Krysl, K. Zhang and J. R. Weertman, “Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part Ⅱ”, Acta Materalia 54, p. 3307, 2006.
60. K. S. Kumar, H. Van Swygenhoven and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys”, Acta Materalia 51, p. 5743, 2003.
61. J. E. Sundeen and R. C. Buchanan, “Thermal sensor properties of cermet resistor films on silicon substrates”, Sensors and Actuators A 90, p. 118, 2001.
62. S. Noh, E. Lee, J. Seo and M. Mehregany, “Electrical properties of nickel oxide thin films for flow sensor application”, Sensors and Actuators A 125, p. 363, 2006.
63. M. Lundstrom, “Moore’s law forever”, Science 299, p. 210, 2003.
64. S. E. Thormpson and S. Parthasarathy, “Moore’s law: the future of Si microslectronics”, Materials Today 9, p. 20, 2006.
65. K. J. Price, L. E. McNeil, A. Suvkanov, E. A. Irene, P. J. MacFarlane and M. E. Zvanut, “Characterization of the luminescence center in photo- and electro-luminescent amorphous silicon oxynitride films”, Journal of Applied Physics 50, p. 2628, 1999.
66. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions”, Journal of Applied Physics 94, p. 041102, 2009.
67. N. Nikolaou, P. Dimitrakis, P. Normand1, S. Schamm, C. Bonafos, G. Ben Assayag A. Mouti and V. Ioannou-Sougleridis, “Tempertature-dependent low electric field charging of Si nanocrystals embedded with in oxide-nitrid-oxide dielectric stacks”, Nanotechnology 20, p. 305704, 2009.
68. G. Scardera, T. Puzzer, I. Perez-Wurfl and G. Conibeer, “The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures”, Journal of Crystal Growth 310, p. 2680, 2008.
69. F. Delachat, M. Carrada, G. Ferblantier, J. J. Grob and A Slaoui, “Properties of silicon nanoparticles embedded in SiNx deposited by microwave-PECVD”, Nanotechnology 20, p. 415608, 2009.
70. V. Lehmann and U. Gosele, “Porous silicon formation: a quantum wire effect”, Applied Physics Letter 58, p. 856, 1991.
71. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Applied Physics Letters 57, p. 1046, 1990.
72. Z. H. Lu, D. J. Lockwood and J. M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices”, Nature 378, p. 258, 1995.
73. N. Lalic and J. Linnros, “Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide”, Journal of Luminescence 80, p. 263, 1998.
74. R. J. Walters, G. I. Bourianoff and H. A. Atwater, “Field effect electroluminescence in silicon nanocrystals”, Nature Materials 4, p. 1, 2005.
75. T. Shimizu-Iwayama, S. Nakao and K. Saitoh, “Visible photoluminescence in Si+- implanted thermal oxide films on crystalline”, Applied Physics Letters 65, p. 1814, 1994.
76. Q. Zhang, S. C. Bayliss and D. A. Hutt, “Blue photoluminescence and local structure of Si nanostructures embedded in SiO2 matrices”, Applied Physics Letters 66, p. 1977, 1995.
77. L. Y. Chen, W. H. Chen and Franklin C. N. Hong, “Visible electroluminescence form silicon nanocrystals embedded in amorphous silicon nitride matrix”, Applied Physics Letter 86, p. 193506, 2005.
78. T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Applied Physics Letters 85, p. 5355, 2004.
79. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach”, Applied Physics Letters 80, p. 661, 2002.
80. K. Lee, T. Kim and W. Hong, "Formation of nanocrystals embedded in a silicon nitride film at a low temperature (≦ 200°C)," Scripta Materialia 59, p. 1190, 2008.
81. B. Delley and E. F. Steigmeier, “Quantum confinement in Si nanocrystals”, Physical Review B 47, p. 1397, 1993.
82. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology”, Journal of Materials Reseach 7, p. 1564, 1992.
83. I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, Interational Jounal of Engineering Science 3, p. 47, 1965.
84. B. D. Cullity and S. R. Stock, “Elements of X-Ray Diffractions”, 3rd ed., Prentice Hall, New Jersey, USA, 2001.
85. K. S. Kumar, H. Van Swygenhoven and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys”, Acta Materialia 51, p. 5743, 2003.
86. B. Zhu, R. J. Asaro, P. Krysl, K. Zhang and J. R. Weertman, “Effects of grain size distribution on the mechanical response of nanocrystalline metals”, Acta Materialia 54, p. 3307, 2006.
87. J. Schiotz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper”, Science 301, p. 1357, 2003.
88. A. Grill, C. Jahnes and C. Cabral, “Layered TaSiN as an oxidation resistant electrically conductive barrier”, Journal of Materials Research 14, p. 1604, 1999.
89. B. Vincent, “Handbook of monochromatic XPS spectra” 1st ed, John Wiley & Sons, California, USA, 2000.
90. X. Zhaou, N. P. Magtoto, M. Leavy and J. A. Kelber, “Chemical vapor deposition of tantalum nitride with tert-butylimino tris (diethylamino) tantalum and atomic hydrogen”, Thin Solid Films 415, p. 308, 2002.
91. P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage and L. Wielunski, “Properties of thin films to tantalum oxide deposited by ion-assisted deposition”, Thin Solid Films 239, p. 181, 1994.
92. F. B. Wu, S. K. Tien, Y. Z. Tsai and J. G. Duh, “Phase transformation and hardness of the Ni-P-Al ternary coatings under thermal annealing”, Thin Solid Films 494, p. 151, 2006.
93. S. M. Yang, Y. Y. Chang, D. Y. Wang , D. Y. Lin and W. T. Wu, “Mechanical properties of nano-structured Ti-Si-N films synthesized by cathodic arc evaporation”, Journal of Alloy Compound 440, p. 375, 2007.
94. C. Cabral, K. L. Saenger, D. E. Kotecki and J. M. E. Harper, “Optimization of TaSiN thin films for use oxidation resistant diffusion barriers”, Journal Materials Research 15, p. 194, 2000.
95. K. C. Liddard, “Thin film resistance bolometer IR detectors”, Infrared Phys. 26, p. 57, 1984.
96. J. H. Tyan and J. T. Lue, “Grain boundary scattering in the normal state resistivity of superconducting NbN thin films”, Journal of Applied Physics 75, p. 325, 1994.
97. A. F. Mayadas and M. Shatzkes, “Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces”, Phsics Review B 1, p. 1382, 1970.
98. G. G. Qin and Y. J. Li, “Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide”, Physics Review B 68, p.1857, 2003.
99. T. Noma, K. S. Seol, H. Kato, M. Fujimaki and Y. Ohki, “Origin of photoluminescence around 2.6- 2.9 eV in silicon oxynitride”, Applied Physics Letter 79, p. 1995, 2001.
100. G. Santana, B. M. Monroy, A. Ortiz, L. Huerta, J. C. Alonso, J. Fandino, J. Aguilar-Hernandez, E. Hoyos, F. Cruz-Gandarilla and G. Contreras-Puentes, “Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles”, Applied Physics Letter 88, p. 041916, 2006.
101. F. Giorgis, C. Vinegoni and L. Pavesi, “Optical absorption and photoluminescence properties of a-Si1-xNx: H films deposited by plasma-enhanced CVD”, Physics Review B 61, p. 4693, 2000.
102. K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer”, Applied Physics Letter 88, p. 209904, 2006.
103. Y. J. Hsu and S. Y. Lu, “Photoluminescence resulting from semiconductor-metal solid solution obeerved in one-dimensional semiconductor nanostructures”, Langmuir 20, p. 23, 2004.
104. Y. Wang, D. Z. Shen, Y. C. Liu, J. Y. Zhang, Z. H. Zhang, Y. L. Liu, Y. M. Lu and X. W. Fan, “Visible photoluminescence of Si clusters embedded in silicon nitride films by plasma-enhanced chemical vapor depositio”, Physica E 27, p. 284, 2005.
105. C. C Chang, J. S. Jeng and J. S. Chen, “Microstructural and electrical characteristics of reactively sputtered Ta-N thin films”, Thin Solid Films 413, p. 46, 2002.
106. H. L. Hao, L. K. Wu, W. Z. Shen and H. F. W. Dekkers, “Origin of visible luminescence in hydrogenated amorphous silicon nitride”, Applied Physics Letter 91, p. 201922, 2007.
107. N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona and F. Rocca, “Si nanocrycrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition”, Journal of Applied Physics 101, p. 113510, 2007.
108. L. V. Mercaldo, E. M. Esposito, P. D. Veneri, G. Fameli, S. Mirabella and G. Nicotra, “First and second-order Raman scattering in Si nanostructures within silicon nitride”, Applied Physics Letter 97, p.153112, 2010.
109. E. Orhan, F. Tessier and R. Marchand, “Aynthesis and energetics of yellow TaON”, Solid State Sciences 4, p. 1071, 2002.
110. F. Esaka, H. Shimada, M. Imamura, N. Matsubayashi, T. Sato, A. Nishijima, A. Kawana, I. Ichimura, T. Kikuchi and K. Furuya, “X-ray absorption and X-ray photoelectron spectroscopic studies of air-oxidized chromium nitride thin films”, Thin Solid Films 281-282, p. 314, 1996.
111. R. Huang, K. Chen, P. Han, H. Dong, X. Wang, D. Chen, W. Li, J. Xu, Z. Ma and X.F. Huang, “Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices”, Applied Physics Letter 90, p. 093515, 2007.
112. K. Ma J. Y. Feng and Z .J. Zhang, “Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering”, Nanotechnology 17, p. 4650, 2006.
113. R. Huang, K. N. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Y. Ma and X. F. Huang, “Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films”, Applied Physics Letter 89, p. 221120, 2006.
114. S. V. Deshpande, E. Gullari, S. W. Brown and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition”, Journal of Applied Physics 77, p. 6534, 1995.
115. S. Naskar, S. D. Wolter, C. A. Bower, B. R. Stoner and J. T. Glass, “Verification of the O-Si-N complex in plasma-enhanced chemical vapor deposition silicon oxynitride films”, Applied Physics Letter 87, p. 261907, 2005.
116. J. Valenta, R. Juhasz and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots”, Applied Physics Letters 80, p. 1070, 2002.
校內:2016-10-19公開