| 研究生: |
蕭玉欣 Siao, Yu-Sin |
|---|---|
| 論文名稱: |
利用奈米壓痕試驗量測聚二甲基矽氧烷之黏著強度 Measurement of Adhesion Strength of Polydimethyl Siloxane (PDMS) by Nanoindentation |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 平均拉拔應力 、黏著強度 、聚二基矽氧烷(PDMS) 、奈米壓痕試驗儀(Nanoindentation) |
| 外文關鍵詞: | average pull-off stress, adhesion strength, polydimethyl siloxane(PDMS), nanoindentation |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文依據Tang等人所探討微柱與剛性平面之黏著界面間的拉拔力大小之數值模擬結果,得知當柱寬夠小時,平均拉拔應力就等於黏著強度,以此模擬結果為基礎,試圖透過試驗方式得知聚二甲基矽氧烷(PDMS)黏著強度。因此以微製造技術利用負型光阻SU-8透過曝光顯影製程製作不同直徑的微圓柱,以此母模翻製出聚二甲基矽氧烷(PDMS)微圓柱陣列,透過奈米壓痕試驗儀並使用平頭探針與聚二甲基矽氧烷(PDMS)微圓柱進行拉拔試驗,藉由卸載過程量測聚二甲基矽氧烷(PDMS)之拉拔力後,並計算表面微結構材料之平均拉拔應力,進而得知聚二甲基矽氧烷(PDMS)之黏著強度。
According to the simulation of the pull-off force on the interface between cylindrical and rigid plane issued by Tang et al. (2005), the average pull-off stress is equal to the adhesion strength while the cylindrical diameter is small enough. We try to know the adhesion strength of polydimethyl siloxane (PDMS) through the experiments based on the simulation. Therefore, micro fabrication technology, which uses negative photoresist SU-8 through UV light exposure and developing process, had been applied to produce cylinder molds with different diameter. Then, PDMS samples were fabricated by SU-8 molds. Finally, nanoindentation and flat tip were used during the unloading process to measure the pull-off force of PDMS cylinder which can be used to calculate the average pull-off stress, by which the adhesion strength of PDMS can be obtained.
[1] K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids”, Proceedings of the Royal Society of London, A 324, pp301-320, (1971).
[2] T. Tang, C.-Y. Hui and N. J. Glassmaker, “Can a fibrillar interface be stronger and tougher than a non-fibrillar one”, Journal of The RoyalSociety Interface, Vol.2, pp505-516, (2005).
[3] 陳隨元,“以奈米壓痕試驗量測聚二甲基矽氧烷之模數及表面黏著能”,國立成功大學土木工程學系,碩士論文,(2008)。
[4] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research Society , Vol.7, No.6, (1992).
[5] G. M. Pharr, W. C. Oliver, and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation”, Journal of Materials Research Society, Vol.7, pp613-617, (1992).
[6] H. Hertz, “On the contact of rigid elastic solids”, J. reine und angewandte Mathematik, Vol. 92, pp156-171, (1882).
[7] Julia K. Deuschle, Gerhard Buerki, H. Matthias Deuschle, Susan Enders, Johann Michler and Eduard Arzt, “In situ indentation testing of elastomers” , Acta Materialia, Vol.56, pp4390-4401, (2008).
[8] D. S. Dugdale, “Yielding of steel sheets containing slits” J. Mech. Phys. Solids, Vol.8, pp100-104, (1960).
[9] G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture”, Advance in Applied Mechanics, vol. VII , pp55-129, (1985).
[10] Hui C. Y., Glassmaker N. J., Tang T., Jagota A. “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion”, Journal of The Royal Society Interface, Vol.1, pp35-48, (2004).
[11] Shaohua Chen and Ai Kah Soh “ Tuning the geometrical parameters of biomimetic fibrillar structures to enhance adhesion”, Journal of The Royal Society Interface, Vol. 5, pp373-382, (2008).
[12] Johnson, K. L., Contact mechanics, Cambridge, UK: Cambridge University Press, (1985).
[13] Persson, B. N. J. “On the mechanism of adhesion inbiological systems”, J. Chem. Phys. Vol.118, pp7614-7621, (2003).
[14] Maugis, D. J. “Adhesion of spheres: the JKR–DMT transition using a Dugdale model”, J. Coll. Interface Sci., Vol.150, pp243-269, (1992).
[15] A. del Campo and C. Greiner, “SU-8:a photoresist for high-aspect-ratio and 3D submicron lithography”, Journal of Micromechanics and Microengineering, Vol.17, pp 81-95, (2007).
[16] A. del Campo, C. Greiner and E. Arzt, “Adhesion of Bioinspired Micropatterned Surfaces:Effects of Pollar Radius, Aspect Ratio, and Preload”, Langmuir, Vol.23, pp3495-3502, (2007).
[17] A. del Campo, C. Greiner, I. Alvarez and E. Arzt, “Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices”, Advanced Materials, Vol.19, pp1973-1977, (2007).
[18] 楊尚諭,“利用奈米壓痕試驗量測黏彈性材料性質”,國立成功大學土木工程學系,碩士論文,(2006)。