| 研究生: |
卓俊龍 Cho, Chun-Lung |
|---|---|
| 論文名稱: |
鈀錯合物催化聯芳溴化物與硫乙酸鹽之耦合反應:合成雜芳烴化合物 Palladium-Catalyzed Coupling of Biaryl Bromides with Thioacetate : Synthesis of Heteroarenes |
| 指導教授: |
吳耀庭
Wu, Yau-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 菲并吲哚啶 、菲并喹啉啶 、雜芳香烴 、聯芳鹵化物 、鈀金屬催化 、環化反應 |
| 外文關鍵詞: | phenanthroindolizidine, phenanthroquinolizidine, heteroarene, biaryl halide, annulation |
| 相關次數: | 點閱:127 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要反應為聯芳鹵化物分別與炔及硫乙酸鉀利用鈀金屬催化進行環化反應。第一部分為聯芳鹵化物與炔的反應。利用先前實驗室所開發的方法,以2,2′-雙碘聯苯化合物 32 與炔類化合物 33,透過鈀金屬催化進行 [4+2] 環化加成反應,可得菲類化合物 34,產率約 40-65%。菲類化合物 34 可利用Pictet-Spengler反應進行環化得到菲并吲哚啶與菲并喹啉啶化合物。第二個部分為聯芳鹵化物與硫乙酸鉀的反應。利用鈀金屬催化雙溴聯噻吩與硫乙酸鉀進行耦合反應,可建立兩次碳硫鍵得到化合物 42。在進行各項測試實驗中,發現鈀催化劑、配位基、鹼、溶劑等條件,對此反應均扮演重要的角色。經過有系統性地探討後,以三(二苯乙烯基丙酮)二鈀(0)與1,1'-雙(二苯基膦)二茂鐵為催化系統,搭配碳酸銫為鹼,二甲基甲醯胺為溶劑,置入120 ºC油鍋中在氮氣下反應12小時,為本研究論文的最佳反應條件。也將此法應用在其他雙溴聯芳 43 上,可順利得到環化產物 42,產率約65-96%。也將此合成方法應用在合成五并環雜芳香烴分子上 (化合物 16、58、61、65)。
The main reactions in this thesis were using palladium complex to catalyze biaryl halides conducting annulation with alkynes and thioacetate. The first part of this thesis was the reaction of biaryl halides with alkynes. We prepared phenanthrenes 34 by palladium-catalyzed annulation of 2,2′-diiodobiphenyls 32 with alkynes 33. The isolated yields were between 40% to 65%. These phenanthrenes 34 could convert to phenanthroindolizidines or phenanthroquin-olizidine through the Pictet-Spengler reaction. The second part of this thesis was the reaction of biaryl halides with thioacetate. We used palladium complex to catalyze coupling reaction of dibromobithiophene with potassium thioacetae to get compound 42a. Systematic studies of reaction conditions revealed that palladium catalysts, ligands, bases and solvents all played key roles. Using Pd2(dba)3 and dppf as catalyst system, Cs2CO3 as base, N,N-dimethylformamide as solvent, we put dibromoaryls,potassium thioacetate and all the reagents into a sealed tube then kept it in an oil bath at 120 ºC for 12 hours under nitrogen. We got highest isolated yield in our test under the reaction condition above. We also applied this optimized method to synthesize compound 42 through annulation of other dibromobiaryls 43.The isolated yields were between 61% to 96%. We combined this method into our synthetic strategy to synthesize fused-ring heteroarenes. ( compound 16、58、61、65 )
1. (a) Xi, Z.; Zhang, R.; Yu, Z.; Ouyang, D.; Huang, R. Bioorg. Med.Chem. Lett. 2005, 15, 2673. (b) Ganguly, T.; Khar, A. Phytomedicine 2002, 9, 288. (c) Ganguly, T.; Badheka, L. P.; Sainis, K. B. Phytomedicine 2001, 8, 431. (d) Rao, K. N.; Bhattacharya, R. K.;Venkatachalam, S. R. Cancer Lett. 1998, 128, 183.
2. Leighty, M. W.; Georg, G. I. Med. Chem. Lett. 2011, 2, 313.
3. Knudsen, C. G.; Rapoport, H. J. Org. Chem. 1983, 48, 2260.
4. Kim, S.; Lee Y.-M.; Lee, J.; Lee, T.; Fu,Y.; Song,Y.; Cho, J.; Kim, D. J. Org. Chem. 2007, 72, 4886–4891.
5. Ihara, M.; Takino, Y.; Tomotake, M.; Fukumoto, K. J. Chem. Soc. Perkin Trans. 1 1990, 2287–2292.
6. Suzuki, H.; Aoyagi, S.; Kibayashi, C. J. Org. Chem. 1995, 60, 6114–6122.
7. Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron 1999, 55 , 2659–2670.
8. Takeuchi, K.; Ishita, A.; Matsuo, J.-i.; Ishibashi, H. Tetrahedron 2007, 63, 11101–11107.
9. Furstner, A.; Kennedy, J. W. J. Chem. Eur. J. 2006, 12, 7398–7410.
10. Lin, Y.-D.; Cho, C.-L.; Ko, C.-W.; Pulte, A.; Wu, Y.-W. J. Org. Chem. 2012, 77, 9979−9988.
11. Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Schmid, G. Appl. Phys. Lett. 2003, 82, 4175.
12. Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.; Chen, S.; Zhang, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 13281−13286.
13. Mazaki, Y.; Kobayashi, K. J. Chem. Soc. Perkin Trans. 2 1992, 761.
14. Schroth, W.; Hintzsche, E.; Felicetti, M.; Roland, S.; Sieler, J.; Kempe, R. Angew. Chem. 1994, 106, 808.
15. Zhang, X.; Cote, A. P.; Matzger, A. J. J. Am. Chem. Soc. 2005, 127, 10502.
16. Okamoto, T.; Kudoh, K.; Wakamiya, A.; Yamaguchi, S. Chem. Eur. J. 2007, 13, 548−556.
17. Kudoh, K.; Okamoto, T.; Yamaguchi, S. Organometallics 2006, 25, 2374−2377
18. (a)Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J. W.; Greenlee, W.; Billard, W.; Binch, H.; Crosby, G.; Ruperto, V.; Duffy, R. A.; McQuade, R.; Lachowicz, J. E. Bioorg. Med.Chem. Lett. 2000, 10, 2247−2250. (b) Martino, G.; Edler, M. C.;Regina, G. L.; Coluccia, A.; Barbera, M.; Barrow, D.; Nicholson, R. I.; Chiosis, G.; Brancale, A.; Hamel, E.; Aatico, M.; Silverstri, R. J. Med. Chem. 2006, 49, 947-954.
19. Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13–14.
20. Lindley, J. Tetrahedron 1984, 40, 1433–1453.
21. Murata,M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397–7403.
22. Fernandez-Rodriguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782–7796.
23. (a) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587–4590. (b) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9, 3495–3499. (c) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283–1286. (d) Wong Y.-C.; Jayanth T. T.; Cheng C.-H. Org. Lett. 2006, 8, 5613–5316. (e) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697–1700. (f) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880–2883.
24. Park, N.; Park, K.; Jang M.; Lee, S. J. Org. Chem. 2011, 76, 4371–4378.
25. (a) Zhang, S.;Qian, P.; Zhang,M.;Hu, M.; Cheng, J. J. Org. Chem. 2010, 75, 6732–6735. (b) Kumar, S.; Engman, L. J. Org. Chem. 2006, 71, 5400–5403. (c) Taniguchi, N. J. Org. Chem. 2004, 69, 6904–6906.
26. (a) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv. Synth. Catal. 2010, 352, 119–124. (b) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454–457.
27. Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598 – 11599.
28. Leriche, P.; Raimundo, J.-M.; Turbiez, M.; Monroche, V.; Allain, M.; Roncali, J.; Frere, P.; Skabarad, P. J. J. Mater. Chem., 2003, 13, 1324–1332.
29. Makoto M. and Rajca A. J. Org. Chem. 2006, 71, 3264–3266.
30. Huang, P.-Y.; Chen, L.-H.; Chen, Y.-Y.; Chang, W.-J.; Wang, J.-J.; Lii, K.-H.; Yan, J.-Y.; Ho, J.-C.; Lee, C.-C.; Kim, C.; Chen, M.-C. Chem. Eur. J. 2013, 19, 3721–3728.
31. Samanta, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2011, 50, 5217–5220.
32. Spurg, A.; Schnakenburg, G.; Waldvogel, S. R. Chem. Eur. J. 2009, 15, 13313–13317.
33. Mitsudo, K.; Shimohara, S.; Mizoguchi, J.; Mandai, H.; Suga, S. Org. Lett. 2012, 14, 2702–2705.
34. Hung, T. Q.; Dang, T. T.; Villinger, A.; Sung, T. V.; Langer, P. Org. Biomol. Chem., 2012, 10, 9041–9044.
35. Li, L.; Xiang, J.; Xu, C. Org. Lett., 2007, 9 , 4877–4879.
36. Werner, S.; Ekkehard, H.; Horst, V.; Ralf, W.; Heike, K. Chemische Berichte, 1994, 27, 401–408.
37. Ebata, H.; Miyazaki, E.; Yamamoto, T.; Takimiya, K. Org. Lett. 2007, 9, 4499–4502.