| 研究生: |
呂東穎 Lu, Tung-Ying |
|---|---|
| 論文名稱: |
聲學超穎材料附加荷姆霍茲共振器之聲音穿透分析 Transmission Analysis of Acoustic Metamaterials with Helmholtz Resonators |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 聲學超穎材料 、穿透損失 、穿孔 、荷姆霍茲共振器 |
| 外文關鍵詞: | acoustic metamaterials, transmission loss, perforation, Helmholtz resonator |
| 相關次數: | 點閱:159 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
噪音衰減長久以來一直是聲學工程領域中積極研究的課題。在本論文中,提出了一種新型的聲學結構,它是由具有穿孔的聲學超穎材料薄膜附加環型質量加上荷姆霍茲共振器所構成。通過使用有限元分析軟體: COMSOL Multiphysics,可以計算此結構的穿透損失、有效質量密度、速度場和薄膜位移。從結果中可以發現:與只使用聲學超穎材料的薄膜相比,添加荷姆霍茲共振器可以產生更寬的噪音衰減頻寬。若有需要不同的噪音衰減頻率,可以通過改變荷姆霍茲共振器的尺寸來實現。
Noise reduction has long been an active research subject in the field of acoustic engineering. A novel acoustic structure consisting of a perforated membrane-ring structure with a Helmholtz resonator was proposed in this thesis. The transmission loss (TL), effective mass density, velocity field and membrane displacement of the present structure are studied by using a finite element analysis software package, COMSOL Multiphysics. It is found that the addition of the Helmholtz resonator can produce a wider attenuation range compared to the use of the single membrane-type acoustic metamaterial. By altering the dimensions of the Helmholtz resonator, the desired attenuation frequency can be achieved.
[1] B. Banerjee, Taylor & Francis, and Boca Raton. “An Introduction to Metamaterials and Waves in Composites,” Boca Raton, FL (2011).
[2] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss and dynamic response of membrane-type locally resonance acoustic metamaterials” J. Appl. Phys. 108, 114905 (2010).
[3] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses,” J. Appl. Phys. 110, 124903 (2011).
[4] Z. Yang, J. Mei, M.Yang, N. H. Chan, and P. Sheng, “Membrane-type acoustic metamaterials with negative dynamic mass,” Phys. Rev. Lett. 101, 204301 (2008).
[5] H. H. Huang and C. T. Sun, “Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density,” New J. Phys. 11, 013003 (2009).
[6] H. H. Huang, C. T. Sun, and G. L. Huang, “On the negative effective mass density in acoustic metamaterials,” Int. J. Eng. Sci. 47, 610-617 (2009).
[7] Y. Xiao, J. Wen, and X. Wen, “Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators,” J. Sound Vib. 331, 5408-5423 (2012).
[8] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic metamaterials with negative modulus,” Nature Mater. 5, 452-456 (2006).
[9] H. W. Chen, “Sound Transmission of Coupled Membrane-Ring Structure: FE Analysis,” M. S. Thesis, National Cheng Kung University, Tainan, Taiwan (2016).
[10] C. Ding, L. Hao, and X. Zhao, “Two-dimensional acoustic metamaterial with negative modulus,” J. Appl. Phys. 108, 074911 (2010).
[11] M. Yang, G. Ma, Z. Yang, and P. Sheng, “Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110, 134301 (2013).
[12] J. Li, C. T. Chan, “Double- negative acoustic metamaterial,” Phys. Rev. E 70, 055602 (2004).
[13] F. Langfeldt, H.Kemsies, W.Gleine, and O.vonEstorff, “Perforated membrane-type acoustic metamaterials,” Phys. Lett. A 318, 1457-1462 (2017).
[14] U. Ingard, ‘‘On the theory and design of acoustic resonators,’’ J. Acoust. Soc. Am. 25, 1037–1061 (1953).
[15] R. C. Chanaud, ‘‘Effects of geometry on the resonance frequency of Helmholtz resonators,’’ J. Sound Vib. 178, 337-348 (1994).
[16] R. L. Panton and J. M. Miller, “Resonant frequencies of cylindrical Helmholtz resonators,” J. Acoust. Soc. Am. 57, 1533 (1975)
[17] P. K. Tang and W. A. Sirignano, ‘‘Theory of a generalized Helmholtz resonator,’’ J. Sound Vib. 26, 247-262 (1973).
[18] A. Selamet and I. Lee, ‘‘Helmholtz resonator with extended neck,’’ Acoust. Soc. Am. 113, 1975 (2003).
[19] A. Selamet, M. B. Xu, and I. J. Lee, ‘‘Helmholtz resonator lined with absorbing material,’’ J. Acoust. Soc. Am. 117 (2), 725 (2005).
[20] S. Griffin, S. A. Lane, S. Huybrechts, “Coupled Helmholtz resonators for acoustic attenuation,” J. Vib. Acoust. 123 (1), 11-17 (2001).
[21] Y. M. Seo, J. J. Park, S. H. Lee, C. M. Park, C. K. Kim, and S. H. Lee, ‘‘Acoustic metamaterial exhibiting four different sign combinations of density and modulus,’’ J. Appl. Phys. 111, 023504 (2012).
[22] Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, “Fundamentals of Acoustics,” 4th Ed. John Wiley & Sons, Inc. (1999).
[23] R. T. Randeberg, “Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design,” Thesis, Norwegian University of Science and Technology, Trondheim, Norway (2000).
[24] J. F. Allard, “Propagation of Sound in Porous Media; Modeling Sound Absorbing Materials,” Elsevier Applied Science (1993).
[25] Frank J. Fahy, “Sound and Structural vibration: Radiation, Transmission and Response,” Academic Press, London. (1987).
[26] COMSOL, “Acoustics Module Model Library Manual,” Version 5.0 (2014).