簡易檢索 / 詳目顯示

研究生: 蘇家萱
Su, Chia-Hsuan,
論文名稱: 纖維與石墨的添加對半碳化銅/酚醛樹脂基摩擦材料機械及磨潤性質影響
Effect of Adding Copper Fiber and Graphite Powder on Mechanical and Tribological Properties of Semi-Carbonized Copper/Phenolic Resin-based Friction Material
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
共同指導教授: 李國榮
Lee, Kuo-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 117
中文關鍵詞: 半金屬纖維磨耗摩擦係數石墨
外文關鍵詞: semi-metallic, fiber, wear, coefficient of friction, graphite
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續本實驗室過去半金屬摩擦材料的成果,進一步開發適合單車煞車用之摩擦材料。探討紅銅纖維/紅銅粉末的相對含量,及石墨粉之添加等製成參數之變化,對半金屬摩擦材料在機械、磨潤等性質及在摩擦過程中噪音表現之影響。
    實驗結果發現,纖維的添加雖可使試片在磨耗過程中摩擦係數提高,但也造成其磨耗損失大幅上升,且在磨耗過程中常有噪音出現;另外,對試片機械性質的影響則是試片纖維含量越多時,試片內部亦形成孔洞,造成其抗壓強度及硬度皆下降。而石墨的添加雖造成試片摩擦係數及抗壓強度及硬度微幅下降,但有利於在磨耗的過程中磨潤層的形成,當石墨添加至z vol%時,試片磨耗損失及噪音的表現均呈現大幅改善之現象。
    總結以上的實驗結果,FbGz試片具有適當的摩擦係數及磨耗損失外,同時其在噪音表現上已無任何噪音出現,另外亦具有不錯的機械性質,為本研究中較佳的成分。

    Semi-metallic friction material has lots of advantages, for example, nice mechanical properties, high temperature wear-resistance and no pollution, is has been widely used for the friction material of mid-load to low-load vehicles. Based on the past research of semi-metallic friction material, furthermore, we change the amount of copper fibers and the graphite powder to investigate their influence to the properties of the specimens. a, b, c and d vol% copper fiber and y, z, w vol% graphite powder are chosen. It is found that more amount of fibers makes the coefficient of friction increases, but gives rise to more wear loss, poorer mechanical properties and more noise. Otherwise, the addition of graphite powder which plays the role of lubrication can lower the coefficient of friction, wear loss, and noise but leads to poorer mechanical properties just like the fibers does. In conclusion, FbGz has good mechanical property, proper coefficient of friction, related low wear loss and the last but not the least, no noise. Thus, in this research, FbGz is the better specimen.

    摘要 II 誌謝 VI 總目錄 VIII 圖目錄 XII 表目錄 XVII 第一章 前言 1 第二章 文獻回顧 4 2.1 摩擦材料簡介 4 2.1.1 摩擦材料的發展 4 2.1.2 摩擦材料的基本分類 5 2.1.3 摩擦材料的應用 10 2.2 摩擦材料的基本性質與規範 15 2.2.1 飛機煞車 15 2.2.2 汽機車煞車 16 2.2.3 自行車煞車 24 2.3 半金屬基摩擦材料之組成物介紹 28 2.3.1 結合材(Binder) 28 2.3.2 纖維(Fibers) 29 2.3.3 固體潤滑劑(Solid lubricant) 30 2.3.4 填充劑(Filler)、研磨劑(Abrasive)、摩擦調整劑(Friction modifier) 32 2.4 半金屬摩擦材料之製程介紹 33 2.4.1 熱壓 33 2.4.2 穩定化 33 2.4.3 半碳化 34 2.5 磨潤性質研究 36 2.5.1 磨潤學簡介 36 2.5.2 摩擦原理 36 2.5.3 影響摩擦特性的因素 38 2.5.4 磨耗機制[Bono et al., 2001, Stachowiak, 2005] 40 第三章 實驗方法 47 3.1 實驗原料 47 3.1.1 酚醛樹脂 47 3.1.2 紅銅粉 48 3.1.3 紅銅纖維 49 3.1.4 石墨粉(Graphite powder) 50 3.2 實驗製程 50 3.2.1 原料混合 52 3.2.2 熱壓成型 53 3.2.3 穩定化 55 3.2.4 半碳化 56 3.2.5 試片加工 57 3.3 性質量測 59 3.3.1 厚度及重量變化量測 59 3.3.2 體密度/孔隙率量測 61 3.3.3 試片切面觀察 63 3.3.4 抗壓強度測試 63 3.3.5 硬度測試 65 3.3.6 磨耗測試 67 3.3.7 顯微結構觀察 71 3.3.8 表面粗糙度測量 72 第四章 結果與討論 74 4.1 試片厚度變化 74 4.2 試片重量變化 77 4.3 體密度/孔隙率 79 4.4 切面顯微結構觀察 81 4.5 抗壓強度 86 4.6 硬度 88 4.7 磨潤性質比較 90 4.8 表面顯微結構觀察 99 4.9 表面粗糙度 107 第五章 結論 109 參考文獻 111

    Abebe M, Appl FC. Theoretical analysis of the basic mechanics of the abrasive processes. Part 1: General model. Wear 126: 251-266, 1988.
    Aderson AE. Wear of brake materials. In Peterson MB, Winer WO, editors. Wear control Handbook, Chap. 5, New York: ASM: 843-857, 1980.
    Albertson CC. Asbestos-free friction material. US Patent 4403047, 1983.
    Anderson AE. Friction and wear of Automotive Brakes. In Henry SD, editor. ASM Handbook, Vol. 18, Metals Park, OH 44073: ASM International: 569-577, 1992.
    Asano H, Iwata K. Friction material composite. US patent 4895882, 1990.
    ASTM D695-96. Standard Test Method for Compressive Properties of Rigid Plastics, 1996.
    Awasthi S, Wood JL. C-C composite materials for aircraft brakes. Advanced Ceramic Materials 3: 449-451, 1988.
    Bahadur S, Gong D, Anderegg J. Investigation of the influence of CaO, CaS and CaF2 fillers on the transfer and wear of nylon by microscopy and XPS analysis. Wear 197: 271-279, 1996.
    Bahadur S, Gong D. The role of copper compounds as fillers in transfer film formation and wear of nylon. Wear 154: 207-223, 1992.
    Bahadur S, Gong D. The role of copper compounds as fillers in transfer and wear behavior of polyetheretherketone. Wear 154: 151-165, 1992.
    Bahadur S, Polineni VK. Tribological study of glass fabric-reinforced polyamide composites filled with CuO and PTFE. Wear 200: 95-104, 1996.
    Bahadur S, Zhang L, Anderegg J. The effect of zinc and copper oxides and other zinc compounds as fillers on the tribological behavior of thermosetting polyester. Wear 203-204: 464-473, 1997.
    Bahadur S, Zhang L, Anderegg J. Tribochemical studies by XPS analysis of transfer films of nylon 11 and its composites containing copper compound. Wear 165: 205-212, 1993.
    Bahadur S. The development of transfer layers and their role in polymer tribology. Wear 245: 92-99, 2000.
    Bergman F, Eriksson M, Jacobson S. Influence of disc topography on generation of brake squeal. Wear 225-229: 621-628, 1999.
    Bijwe J., Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - a review, Polymer Composites 18:378-396, 1997
    Bowden FP, Tabor D. The friction and lubrication of solid. Oxford: Clarendon Press: 87, 1950.
    CNS 2586, D2002. Brake linings for automobiles.
    CNS 8813, D3122. Method of test for brake shoe assembly of motor cycles.
    CNS 8814, D2129. Brake shoe assembly for motorcycles.
    Filip Bergman, Mikael Eriksson, Staffan Jacobson. Influence of disc topography on generation of brake squeal Wear 225–229 _1999. 621–628
    Hara Y, Oyama T, Inoue M, Mibe T, Nakanishi H. Non-asbestos disc brake pad for automobiles. US Patent 6220404, 2001.
    Hawthorne HM. On the role of interfacial debris morphology in a conforming contact tribosystem. Wear 149: 169-185, 1991.
    Hutchings IM. Mechanisms of wear in powder technology: a review. Powder Technol 76:3-13, 1993.
    Inoue M. Application of polymers to brakes and clutches. Jpn J Tribol 37(6): 493-496, 1992.
    Iwata K, Asano H. Friction material. US Patent 4735975, 1988.
    Jacko MG, Ducharme RT, Somers JH. Brake and clutch emissions generated during vehicle operation. SAE Trans 35: 1813-1831, 1973.
    Jacko MG, Rhee SK. Brake linings and clutch facings. In Grayson M, editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983.
    Jacko MG. Physical and chemical changes of organic disk pads in service. Wear 46: 163-175, 1978.
    JIS 1994. Surface Roughness
    JIS H8503. Methods of Wear Resistance Test for Metallic Coatings, 1983.
    Kamioka N. Friction material of brake. Japanese Laid-Open Patent Publication 63-219924, 1988.
    Kamioka N. Friction material of brake. Japanese Laid-Open Patent Publication 63219924A , 1987.
    Kamioka N. Production of friction material. Japanese Laid-Open Patent Publication 63-310770, 1988.
    Kani H. Molded resin composition of friction material for use in clutches. US Patent 4777193, 1988.
    Kim SJ, Cho MH, Lim D-S, Jang H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 251: 1484–1491, 2001.
    Kitahara S, Muramatsu F, Umezawa S, Takarada M, Takahashi T. Wet friction material. US Patent 5563196, 1996.
    Kitahara S, Muramatsu F, Umezawa S. Wet frictional material and process for producting the same. US Patent 6331358 B1, 2001.
    Nakanishi M, Kawabata M, Suzuki A, Shirasawa A. Friction material and method of producing the same. US Patent 6423668, 2002.
    Newman LB. Friction materials. New Jersey. USA: Noyes data corporation: 1, 1978.
    Ogawa H, Shimazaki K, Niijima K. Friction material. US Patent 4861809, 1989.
    Ogawa H, Takenaka M. Friction material. US Patent 6432187, 2002.
    Opensite, http://open-site.org/Science/Physics/Mechanics/Friction/
    Oya K, Sayama N. Frictional material for brake. Japanese Laid-Open Patent Publication 04-022827, 1992.
    Peter J. Blau. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives, Metals and Ceramics Division, August 2001
    Rhee SK, Kwolek JP. Sponge iron friction material. US Patent 3835118, 1974.
    Rhee SK. Friction coefficient of automotive friction materials- Its sensitivity to load, speed, and temperature. SAE Paper No. 740415, 1974.
    Rhee SK. Wear equation for polymers sliding against metal surfaces. Wear 16: 431-445, 1970.
    Rhee SK. Wear mechanisms at low-temperatures for metal-reinforced phenolic resins. Wear 23: 261-263, 1973.
    Rhee SK. Wear of metal-reinforced phenolic resins. Wear 18: 471-477, 1971.
    Richardson RCD. The abrasive wear of metals and alloys. Proc Instn Mech Engrs 182(3A): 410-414, 1967.
    Roy AK. Effect of carbonization rates on the interlaminar tensile stiffness and strength of two-dimensional carbon-carbon composites. Thermomechanical behavior of advanced structural materials ASME 1993; 34-173: 171-179.
    Suzuki M, Mori M, Yagi H. Wet friction material. US Patent 6265066, 2001.
    Suzuki M, Sakai M. Wet friction engagement plate. US Patent 5823314, 1998.
    Takenaka M, Ogawa H, Shibutani H. Friction material. US Patent 6355601, 2000.
    Van De Velde F, De Baets P. The friction and wear behaviour of polyamide 6 sliding against steel at low velocity under very high contact pressures. Wear 209: 106-114, 1997.
    Wright MA, Butson G. On-highway brake characterization and performance evaluation. Materially Speaking 11(1): 1-7, 1997.
    Yuji H, Takahisa K. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribol Transactions 39(2): 346-353, 1996.
    高維山譯,煞車系統設計及安全性,科技圖書,台北市,中華民國93年
    何淑靜,銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,中華民國93年
    施文皓,橡膠基摩擦材料製程及磨潤性質研究,國立成功大學材料科學及工程學系,台南市,中華民國100年
    行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,中華民國85年
    經濟部工業局,自行車技術手冊,中華民國90年

    無法下載圖示 校內:2024-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE