簡易檢索 / 詳目顯示

研究生: 蔡侑庭
Tsai, Yo-Ting
論文名稱: DNA甲基轉移酵素3A其基因轉錄調控異常之機制探討
Deregulation of RB/E2F1 Transcriptional Control of DNA Methyltransferase 3A Gene in Cancer
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 85
中文關鍵詞: DNA甲基轉移酵素
外文關鍵詞: DNMT3A, RB
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景及目的:抑癌基因的啟動子被過度甲基化時,會導致該基因不表達進而使腫瘤生成;此甲基化現象主要是由DNA甲基轉移酵素(DNA 5’-cytosine-methyltransferase,DNMTs)所調控,DNMTs主要有DNMT1、DNMT3A以及DNMT3B,本實驗室及許多文獻指出,在很多癌症中發現DNMTs有過度表達的情形,然而造成此現象的詳細機制仍不清楚;文獻亦顯示RB/E2F1能負調控DNMT1啟動子的活性,進而降低DNMT1蛋白的表現,但對DNMT3A是否具有類似的調控機制尚未清楚。因此本篇研究目的為以細胞及臨床模式探討DNMT3A其轉錄調控異常之機制。
    研究方法及結果:首先在細胞層次上,觀察抑癌蛋白 RB 是否對 DNMTs 扮演負轉錄調控因子的角色。由報導基因冷光酵素活性分析(luciferase assay)發現在膀胱癌細胞株5637細胞中大量表現RB後,RB的確會抑制 DNMT3A啟動子的活性及mRNA表現量,並且以西方墨點法(Western blot)發現,RB的過度表達也會降低肺癌細胞株A549及H1299、骨癌細胞株Saos2與膀胱癌細胞株5637的DNMT3A蛋白質表現量;以siRNA降低RB的表現量後,DNMT3A的mRNA與蛋白質表現量上升,顯示RB的確能負轉錄調控DNMT3A的基因表現。
    在文獻中已知DNMT1啟動子上含有E2F1蛋白的結合位置,並且知道E2F1能正向調控DNMT1啟動子活性,但是DNMT3A啟動子是否也含有E2F1蛋白的結合區域及是否受E2F1正向調控還尚未知道,所以首先在H1299細胞中,分別大量表現E2F1及用siRNA降低E2F1的表現,發現DNMT3A能受到E2F1的正調控;此外,以DNA親和性沉澱分析(DNA affinity purification assay,DAPA)與染色質免疫沈澱(chromatin immunoprecipitation)等實驗證實當RB與E2F1蛋白同時結合在DNMT3A啟動子上時,會負調控DNMT3A的基因表現。
    此外,文獻顯示MDM2會促進RB蛋白與20S proteasome結合或增加RB被ubiquitination之程度,造成RB蛋白降解,所以本研究也觀察MDM2降解RB蛋白的現象是否也在DNMT3A基因調控中扮演重要的角色,進而在H1299及5637細胞中以西方墨點法及免疫沉澱法(immunoprecipitation)實驗證實,過度表現MDM2蛋白會增加DNMT3A蛋白質表現量,也提高了RB蛋白被ubiqutination程度,並且降低了RB蛋白的表現量,使得DNMT3A的轉錄調控異常。
    在臨床研究上,以免疫組織染色法(immunohistochemistry)分析106位非小細胞肺癌病人組織中DNMT3A與RB蛋白之相關性,發現DNMT3A蛋白過度表現且RB蛋白低表現之負相關性 (P值為0.016);MDM2蛋白過度表現且RB蛋白低表現之負相關性(P值為0.042)。此外,病人存活率分析資料指出:DNMT3A、RB與MDM2蛋白皆正常表現的病人,與其他病人相較,有較好的預後(P值為0.049),顯示DNMT3A、RB與MDM2蛋白的表現程度可做為肺癌病人預後的指標。
    結論: 由以上細胞及臨床模式實驗結果顯示,E2F1能正轉錄調控DNMT3A啟動子,增加其蛋白質表現量,而RB/E2F1複合體則會負轉錄調控DNMT3A的啟動子,進而降低DNMT3A的mRNA及蛋白質表現,但此RB/E2F1負調控DNMT3A的作用可被MDM2蛋白所拮抗。

    Background and Purpose: The hypermethylated promoter of tumor suppressors leads to gene silence and takes part in tumorigenesis. DNA methyltransferases (DNMTs) mainly include DNMT1, DNMT3A, and DNMT3B, which have been previously reported to be overexpressed in many cancers. However, the transcriptional control of DNMTs in cancer remains mostly unclear. It has been demonstrated that RB and E2F1 repress DNMT1 promoter activity and reduce the DNMT1 protein level. Therefore, this study aims to examine whether the transcriptional regulation of DNMT3A gene is also under the control of RB/E2F1 pathway in cancer using cell and clinical studies.
    Results: Using the promoter activity assay, this study found that overexpression of RB inhibited DNMT3A promoter activity. In addition, overexpression of RB decreased mRNA and protein levels of DNMT3A in various cancer cells, whereas si-knockdown of RB increased DNMT3A mRNA and protein levels, suggesting that RB/E2F1 negatively regulated the transcriptional activity of DNMT3A. Using DNA affinity precipitation assay (DAPA), chromatin immunoprecipitation assay and Western blot, the current study showed for the first time that E2F1 bound to DNMT3A promoter region and activated DNMT3A expression. However, RB/E2F1 complex bound on the DNMT3A promoter to act as transcriptional repressors. Moreover, it has been reported that murine double minute (MDM2) facilitates RB degradation. Therefore, the study investigated whether MDM2 plays a role in regulating DNMT3A by degradation of RB in cell model and lung cancer patients. The data indicated that overexpressed MDM2 in cancer cells upregulated mRNA and protein levels of the DNMT3A and decreased the RB protein level. Furthermore, immunoprecipitation showed that RB interacted with MDM2. In addition, overexpression of MDM2 increased the level of RB ubiquitination. Importantly, RB and DNMT3A showed inverse correlation in 106 lung cancer patients (P = 0.016). DNMT3A and MDM2 showed concurrent expression pattern in lung cancer patients (P < 0.001). Patients with normal expression for all tested proteins including DNMT3A, RB and MDM2 showed better post-operative survival than other patients (P = 0.049), indicating that DNMT3A protein expression in relation to RB and MDM2 expression status can be a prognostic factor for lung cancer.
    Conclusion: This study provides first cell and clinical evidence that RB/E2F1 pathway transcriptionally represses DNMT3A expression and this regulation can be attenuated by MDM2 expression. In clinical consequence, lung cancer patients with normal expression for DNMT3A, RB and MDM2 proteins have significantly better prognosis compared to other patients. Interestingly, the results of DAPA/MS and Western blot analyses showed that hnRNP A1 protein may cooperate with RB and E2F1 to bind to the DNMT3A promoter and suppress its expression. Further characterization of hnRNP A1 cooperating with RB and E2F1 to repress the DNMT3A transcription is worthy of investigation.

    Introduction I. The epigenetic alteration of cancers (a) Promoter hypermethylation of tumor suppressor genes----------------------------------------------------------- 1 (b) The structure and function of DNA methyltransferases (DNMTs)------------------------------------------------------ 2 (c) The expression level of DNMTs in cancer---------------- 5 (d) Our previous promoter methylation studies on TSG in lung cancer------------------------------------------------- 5 II. The transcriptional activators and signaling proteins of DNMT activation in cell line studies--------------------- 5 III. The transcriptional repressors of DNMT promoters in cell line studies (a) The p53 and DNMTs ---------------------------------------- 6 (b) The RB and DNMTs ---------------------------------------- 7 IV. The possible regulators of DNMT3A (a) The RB/MDM2 (murine double minute) regulation loop and DNMT3A------------------------------------------ 9 (b) The hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) and DNMT3A-------------------- 10 V Overexpression and deregulation of DNMT3A in human diseases------------------------------------------------ 12 Purposes------------------------------------------------------------ 14 Materials and Methods I. Cell culture---------------------------------------------------- 16 II. Plasmid, RNAi and transfection---------------------------- 16 III. Dual luciferase assay----------------------------------------- 17 IV. RNA extraction and reverse-transcriptase polymerase chain reaction (RT-PCR) assay----------------------------- 17 V. Western blot--------------------------------------------------- 18 VI. Immunoprecipitation (IP) and Western blot-------------- 19 VII. Chromatin immunoprecipitation (ChIP)-PCR assay---- 19 VIII. DNA affinity precipitation assay (DAPA)---------------- 19 IX. Study population--------------------------------------------- 20 X. Immunohistochemistry (IHC) assay----------------------- 21 XI. Statistical analysis-------------------------------------------- 21 Results In cell models: I. RB represses promoter activity and gene expression of DNMT1 and DNMT3A----------------------------------------- 23 II. E2F1 positively regulates the protein expression of DNMT1 and DNMT3A---------------------------------------- 24 III. RB and E2F1 bind at DNMT3A promoter p2 region (-450~ -127) ----------------------------------------------------- 24 IV. MDM2 attenuates the RB/E2F1-mediated transcriptional repression of DNMT3A expression--------------------------- 25 V. hnRNP A1 involves in RB/E2F1 transcriptional regulation of DNMT3A expression--------------------------- 26 In clinical model: I. The DNMT3A protein overexpression is inversely and directly correlated with RB and MDM2 expression levels, respectively, in NSCLC patients------------------------------ 27 II. Prognostic effects of DNMT1/DNMT3A overexpression in relation to RB and MDM2 expression-------------------- 27 Discussion--------------------------------------------------------- 29 References--------------------------------------------------------- 34 Tables--------------------------------------------------------------- 45 Figures-------------------------------------------------------------- 55

    Alarcon-Vargas, D., and Ronai, Z. (2002). p53-Mdm2--the affair that never ends. Carcinogenesis 23, 541-547.
    Bakin, A.V., and Curran, T. (1999). Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283, 387-390.
    Balada, E., Ordi-Ros, J., Serrano-Acedo, S., Martinez-Lostao, L., Rosa-Leyva, M., and Vilardell-Tarres, M. (2008). Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus. Immunology 124, 339-347.
    Belinsky, S.A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4, 707-717.
    Bigey, P., Ramchandani, S., Theberge, J., Araujo, F.D., and Szyf, M. (2000). Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 242, 407-418.
    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21.
    Burkhart, D.L., and Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8, 671-682.
    Callebaut, I., Courvalin, J.C., and Mornon, J.P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446, 189-193.
    Campillos, M., Lamas, J.R., Garcia, M.A., Bullido, M.J., Valdivieso, F., and Vazquez, J. (2003). Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the -219T allelic form modulates APOE promoter activity. Nucleic Acids Res 31, 3063-3070.
    Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C., and La Thangue, N.B. (2001). Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3, 667-674.
    Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99, 16916-16921.
    Chen, H., Hewison, M., Hu, B., and Adams, J.S. (2003). Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 100, 6109-6114.
    Chen, H., Hu, B., Allegretto, E.A., and Adams, J.S. (2000). The vitamin D response element-binding protein. A novel dominant-negative regulator of vitamin D-directed transactivation. J Biol Chem 275, 35557-35564.
    Chen, J.T., Chen, Y.C., Chen, C.Y., and Wang, Y.C. (2001). Loss of p16 and/or pRb protein expression in NSCLC. An immunohistochemical and prognostic study. Lung Cancer 31, 163-170.
    Chen, Z.X., Mann, J.R., Hsieh, C.L., Riggs, A.D., and Chedin, F. (2005). Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95, 902-917.
    Chuang, L.S., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F. (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996-2000.
    Classon, M., and Harlow, E. (2002). The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2, 910-917.
    De Marzo, A.M., Marchi, V.L., Yang, E.S., Veeraswamy, R., Lin, X., and Nelson, W.G. (1999). Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 59, 3855-3860.
    Deng, C., Lu, Q., Zhang, Z., Rao, T., Attwood, J., Yung, R., and Richardson, B. (2003). Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 48, 746-756.
    Ding, W.J., Fang, J.Y., Chen, X.Y., and Peng, Y.S. (2008). The expression and clinical significance of DNA methyltransferase proteins in human gastric cancer. Dig Dise Sci 53, 2083-2089.
    Donev, R.M., Doneva, T.A., Bowen, W.R., and Sheer, D. (2002). HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol Cell Biochem 233, 181-185.
    Dreyfuss, G., Matunis, M.J., Pinol-Roma, S., and Burd, C.G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62, 289-321.
    Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12, 2245-2262.
    Ehrlich, M. (2003). The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol (Orlando, Fla 109, 17-28.
    Etoh, T., Kanai, Y., Ushijima, S., Nakagawa, T., Nakanishi, Y., Sasako, M., Kitano, S., and Hirohashi, S. (2004). Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 164, 689-699.
    Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., Liu, S., Alder, H., Costinean, S., Fernandez-Cymering, C., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104, 15805-15810.
    Freedberg, D.E., Rigas, S.H., Russak, J., Gai, W., Kaplow, M., Osman, I., Turner, F., Randerson-Moor, J.A., Houghton, A., Busam, K., et al. (2008). Frequent p16-independent inactivation of p14ARF in human melanoma. J Natl Cancer Inst 100, 784-795.
    Freedman, D.A., and Levine, A.J. (1998). Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18, 7288-7293.
    Fuks, F., Burgers, W.A., Godin, N., Kasai, M., and Kouzarides, T. (2001). Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20, 2536-2544.
    Geiman, T.M., Sankpal, U.T., Robertson, A.K., Zhao, Y., and Robertson, K.D. (2004). DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 318, 544-555.
    Giacinti, C., and Giordano, A. (2006). RB and cell cycle progression. Oncogene 25, 5220-5227.
    Girault, I., Tozlu, S., Lidereau, R., and Bieche, I. (2003). Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 9, 4415-4422.
    Gu, L., Ying, H., Zheng, H., Murray, S.A., and Xiao, Z.X. (2003). The MDM2 RING finger is required for cell cycle-dependent regulation of its protein expression. FEBS Lett 544, 218-222.
    Guimaraes, D.P., and Hainaut, P. (2002). TP53: a key gene in human cancer. Biochimie 84, 83-93.
    Hay, D.C., Kemp, G.D., Dargemont, C., and Hay, R.T. (2001). Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol 21, 3482-3490.
    Hermann, A., Gowher, H., and Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61, 2571-2587.
    Hermann, A., Schmitt, S., and Jeltsch, A. (2003). The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278, 31717-31721.
    Hoffman, W.H., Biade, S., Zilfou, J.T., Chen, J., and Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277, 3247-3257.
    Hsieh, J.K., Chan, F.S., O'Connor, D.J., Mittnacht, S., Zhong, S., and Lu, X. (1999). RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell 3, 181-193.
    Hsu, H.S., Wang, Y.C., Tseng, R.C., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2004). 5' cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Clin Cancer Res 10, 4734-4741.
    Ishikawa, F., Matunis, M.J., Dreyfuss, G., and Cech, T.R. (1993). Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol 13, 4301-4310.
    Jeltsch, A., Nellen, W., and Lyko, F. (2006). Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 31, 306-308.
    Jinawath, A., Miyake, S., Yanagisawa, Y., Akiyama, Y., and Yuasa, Y. (2005). Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Sp1 zinc finger proteins. Biochem J 385, 557-564.
    Kanai, M., Tashiro, E., Maruki, H., Minato, Y., and Imoto, M. (2009). Transcriptional regulation of human fibroblast growth factor receptor 1 by E2F-1. Gene 438, 49-56.
    Kim, H., Kwon, Y.M., Kim, J.S., Han, J., Shim, Y.M., Park, J., and Kim, D.H. (2006). Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer 107, 1042-1049.
    Kimura, H., Nakamura, T., Ogawa, T., Tanaka, S., and Shiota, K. (2003). Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 31, 3101-3113.
    Kishikawa, S., Murata, T., Kimura, H., Shiota, K., and Yokoyama, K.K. (2002). Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem 269, 2961-2970.
    Knudsen, E.S., and Knudsen, K.E. (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8, 714-724.
    Krecic, A.M., and Swanson, M.S. (1999). hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11, 363-371.
    LaBranche, H., Dupuis, S., Ben-David, Y., Bani, M.R., Wellinger, R.J., and Chabot, B. (1998). Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nature genetics 19, 199-202.
    Laird, P.W. (2005). Cancer epigenetics. Hum Mol Genet 14 Spec No 1, R65-76.
    Lau, J.S., Baumeister, P., Kim, E., Roy, B., Hsieh, T.Y., Lai, M., and Lee, A.S. (2000). Heterogeneous nuclear ribonucleoproteins as regulators of gene expression through interactions with the human thymidine kinase promoter. J Cell Biochem 79, 395-406.
    Lee, J.H., Voo, K.S., and Skalnik, D.G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol Chem 276, 44669-44676.
    Lee, M.N., Tseng, R.C., Hsu, H.S., Chen, J.Y., Tzao, C., Ho, W.L., and Wang, Y.C. (2007). Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13, 832-838.
    Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915-926.
    Lin, R.K., Hsu, H.S., Chang, J.W., Chen, C.Y., Chen, J.T., and Wang, Y.C. (2007). Alteration of DNA methyltransferases contributes to 5'CpG methylation and poor prognosis in lung cancer. Lung cancer (Amsterdam, Netherlands) 55, 205-213.
    Lin, T.S., Lee, H., Chen, R.A., Ho, M.L., Lin, C.Y., Chen, Y.H., Tsai, Y.Y., Chou, M.C., and Cheng, Y.W. (2005). An association of DNMT3b protein expression with P16INK4a promoter hypermethylation in non-smoking female lung cancer with human papillomavirus infection. Cancer Lett 226, 77-84.
    Liu, H., Dibling, B., Spike, B., Dirlam, A., and Macleod, K. (2004). New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 14, 55-64.
    Liu, Y., Oakeley, E.J., Sun, L., and Jost, J.P. (1998). Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 26, 1038-1045.
    Lu, R., Wang, X., Chen, Z.F., Sun, D.F., Tian, X.Q., and Fang, J.Y. (2007). Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decreases DNA methylation in colon cancer cells. J Biol Chem 282, 12249-12259.
    Martin, K., Trouche, D., Hagemeier, C., Sorensen, T.S., La Thangue, N.B., and Kouzarides, T. (1995). Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375, 691-694.
    Mayeda, A., and Krainer, A.R. (1992). Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365-375.
    McCabe, M.T., Davis, J.N., and Day, M.L. (2005). Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65, 3624-3632.
    McCabe, M.T., Low, J.A., Imperiale, M.J., and Day, M.L. (2006). Human polyomavirus BKV transcriptionally activates DNA methyltransferase 1 through the pRb/E2F pathway. Oncogene 25, 2727-2735.
    Michael, D., and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13, 49-58.
    Mirza, A., McGuirk, M., Hockenberry, T.N., Wu, Q., Ashar, H., Black, S., Wen, S.F., Wang, L., Kirschmeier, P., Bishop, W.R., et al. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21, 2613-2622.
    Momand, J., Jung, D., Wilczynski, S., and Niland, J. (1998). The MDM2 gene amplification database. Nucleic Acids Res 26, 3453-3459.
    Momparler, R.L. (2003). Cancer epigenetics. Oncogene 22, 6479-6483.
    Morey Kinney, S.R., Smiraglia, D.J., James, S.R., Moser, M.T., Foster, B.A., and Karpf, A.R. (2008). Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res 6, 1365-1374.
    Morris, G.F., Bischoff, J.R., and Mathews, M.B. (1996). Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53. Proc Natl Acad Sci USA 93, 895-899.
    Nakagawa, T., Kanai, Y., Saito, Y., Kitamura, T., Kakizoe, T., and Hirohashi, S. (2003). Increased DNA methyltransferase 1 protein expression in human transitional cell carcinoma of the bladder. J Urol 170, 2463-2466.
    Nakielny, S., and Dreyfuss, G. (1997). Nuclear export of proteins and RNAs. Curr Opin Cell Biol 9, 420-429.
    Nguyen, D.X., Baglia, L.A., Huang, S.M., Baker, C.M., and McCance, D.J. (2004). Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 23, 1609-1618.
    Oka, M., Meacham, A.M., Hamazaki, T., Rodic, N., Chang, L.J., and Terada, N. (2005). De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2'-deoxycytidine. Oncogene 24, 3091-3099.
    Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999a). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
    Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999b). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.
    Okano, M., Xie, S., and Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature genetics 19, 219-220.
    Patra, S.K., Patra, A., Zhao, H., and Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33, 163-171.
    Peterson, E.J., Bogler, O., and Taylor, S.M. (2003). p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer Res 63, 6579-6582.
    Pinol-Roma, S., Choi, Y.D., Matunis, M.J., and Dreyfuss, G. (1988). Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 2, 215-227.
    Robertson, K.D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene 20, 3139-3155.
    Robertson, K.D., Ait-Si-Ali, S., Yokochi, T., Wade, P.A., Jones, P.L., and Wolffe, A.P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature genetics 25, 338-342.
    Rouleau, J., MacLeod, A.R., and Szyf, M. (1995). Regulation of the DNA methyltransferase by the Ras-AP-1 signaling pathway. J Biol Chem 270, 1595-1601.
    Saito, Y., Kanai, Y., Nakagawa, T., Sakamoto, M., Saito, H., Ishii, H., and Hirohashi, S. (2003). Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105, 527-532.
    Saito, Y., Kanai, Y., Sakamoto, M., Saito, H., Ishii, H., and Hirohashi, S. (2001). Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33, 561-568.
    Scardocci, A., Guidi, F., D'Alo, F., Gumiero, D., Fabiani, E., Diruscio, A., Martini, M., Larocca, L.M., Zollino, M., Hohaus, S., et al. (2006). Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer 95, 1108-1113.
    Sdek, P., Ying, H., Chang, D.L., Qiu, W., Zheng, H., Touitou, R., Allday, M.J., and Xiao, Z.X. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20, 699-708.
    Shamay, M., Krithivas, A., Zhang, J., and Hayward, S.D. (2006). Recruitment of the de novo DNA methyltransferase Dnmt3a by Kaposi's sarcoma-associated herpesvirus LANA. Proc Natl Acad Sci USA 103, 14554-14559.
    Sheikh, M.S., Carrier, F., Johnson, A.C., Ogdon, S.E., and Fornace, A.J., Jr. (1997). Identification of an additional p53-responsive site in the human epidermal growth factor receptor gene promotor. Oncogene 15, 1095-1101.
    Siddiqui, H., Fox, S.R., Gunawardena, R.W., and Knudsen, E.S. (2007). Loss of RB compromises specific heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol 211, 131-137.
    Siedlecki, P., and Zielenkiewicz, P. (2006). Mammalian DNA methyltransferases. Acta Biochim Pol 53, 245-256.
    Slack, A., Pinard, M., Araujo, F.D., and Szyf, M. (2001). A novel regulatory element in the dnmt1 gene that responds to co-activation by Rb and c-Jun. Gene 268, 87-96.
    Sun, Y., Cheung, J.M., Martel-Pelletier, J., Pelletier, J.P., Wenger, L., Altman, R.D., Howell, D.S., and Cheung, H.S. (2000). Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275, 11327-11332.
    Takimoto, M., Tomonaga, T., Matunis, M., Avigan, M., Krutzsch, H., Dreyfuss, G., and Levens, D. (1993). Specific binding of heterogeneous ribonucleoprotein particle protein K to the human c-myc promoter, in vitro. J Biol Chem 268, 18249-18258.
    Trouche, D., Le Chalony, C., Muchardt, C., Yaniv, M., and Kouzarides, T. (1997). RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natil Acad Sci USA 94, 11268-11273.
    Tsai, C.L., Li, H.P., Lu, Y.J., Hsueh, C., Liang, Y., Chen, C.L., Tsao, S.W., Tse, K.P., Yu, J.S., and Chang, Y.S. (2006). Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 66, 11668-11676.
    Tseng, R.C., Chang, J.W., Hsien, F.J., Chang, Y.H., Hsiao, C.F., Chen, J.T., Chen, C.Y., Jou, Y.S., and Wang, Y.C. (2005). Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int J Cancer 117, 241-247.
    Tseng, R.C., Hsieh, F.J., Shih, C.M., Hsu, H.S., Chen, C.Y., and Wang, Y.C. (2009). Lung cancer susceptibility and prognosis associated with polymorphisms in the nonhomologous end-joining pathway genes: a multiple genotype-phenotype study. Cancer.
    Tseng, R.C., Lin, R.K., Wen, C.K., Tseng, C., Hsu, H.S., Hsu, W.H., and Wang, Y.C. (2008). Epigenetic silencing of AXIN2/betaTrCP and deregulation of p53-mediated control lead to wild-type beta-catenin nuclear accumulation in lung tumorigenesis. Oncogene 27, 4488-4496.
    Tsutsumi-Ishii, Y., Tadokoro, K., Hanaoka, F., and Tsuchida, N. (1995). Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 6, 1-8.
    Tzao, C., Tsai, H.Y., Chen, J.T., Chen, C.Y., and Wang, Y.C. (2004). 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer 40, 2175-2183.
    Uchida, C., Miwa, S., Kitagawa, K., Hattori, T., Isobe, T., Otani, S., Oda, T., Sugimura, H., Kamijo, T., Ookawa, K., et al. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24, 160-169.
    Wang, Y.C., Hsu, H.S., Chen, T.P., and Chen, J.T. (2006). Molecular diagnostic markers for lung cancer in sputum and plasma. Ann N Y Acad Sci 1075, 179-184.
    Wang, Y.C., Lin, R.K., Tan, Y.H., Chen, J.T., Chen, C.Y., and Wang, Y.C. (2005). Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol 23, 154-164.
    Wang, Y.C., Lu, Y.P., Tseng, R.C., Lin, R.K., Chang, J.W., Chen, J.T., Shih, C.M., and Chen, C.Y. (2003). Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest 111, 887-895.
    Werner, H., Karnieli, E., Rauscher, F.J., and LeRoith, D. (1996). Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natil Acad Sci USA 93, 8318-8323.
    Wikman, H., and Kettunen, E. (2006). Regulation of the G1/S phase of the cell cycle and alterations in the RB pathway in human lung cancer. Expert Rev Anticancer Ther 6, 515-530.
    Wu, C.Y., Tseng, R.C., Hsu, H.S., Wang, Y.C., and Hsu, M.T. (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung cancer (Amsterdam, Netherlands) 63, 360-367.
    Wu, Y., Strawn, E., Basir, Z., Halverson, G., and Guo, S.W. (2007). Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Ssteril 87, 24-32.
    Xia, H. (2005). Regulation of gamma-fibrinogen chain expression by heterogeneous nuclear ribonucleoprotein A1. J Biol Chem 280, 13171-13178.
    Xiao, Y., Word, B., Starlard-Davenport, A., Haefele, A., Lyn-Cook, B.D., and Hammons, G. (2008). Age and gender affect DNMT3a and DNMT3b expression in human liver. Cell Biol Toxicol 24, 265-272.
    Xiao, Z.X., Chen, J., Levine, A.J., Modjtahedi, N., Xing, J., Sellers, W.R., and Livingston, D.M. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694-698.
    Xiong, Y., Dowdy, S.C., Podratz, K.C., Jin, F., Attewell, J.R., Eberhardt, N.L., and Jiang, S.W. (2005). Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res 65, 2684-2689.
    Xu, X.L., Fang, Y., Lee, T.C., Forrest, D., Gregory-Evans, C., Almeida, D., Liu, A., Jhanwar, S.C., Abramson, D.H., and Cobrinik, D. (2009). Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137, 1018-1031.
    Zimmermann, C., Guhl, E., and Graessmann, A. (1997). Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol Chem 378, 393-405.

    下載圖示 校內:2010-07-23公開
    校外:2010-07-23公開
    QR CODE