簡易檢索 / 詳目顯示

研究生: 陳玟錡
Chen, Wen-Qi
論文名稱: 利用原子分散金增強可降解零價銅奈米立方體之連續性類氧化酶與類芬頓反應以改善化學動力學治療
Atomically Dispersed Golds on Degradable Zero-valent Copper Nanocubes on Augment Cascade Oxidase- and Fenton-like Reactions for Chemodynamic Therapy
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 零價銅類氧化酶單原子催化劑生物可降解材料化學動力學治療
外文關鍵詞: Zero-valent Copper, Oxidase-mimicking, Biodegradable materials, Single-atom catalyst, Chemodynamic therapy
相關次數: 點閱:34下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,化學動力學治療被廣泛研究並應用於癌症治療上,雖然化學動力學治 療已被證實可以抑制腫瘤細胞的生長,但腫瘤細胞內源性過氧化氫濃度仍不足以使 芬頓催化劑提供理想的治療效果,為此,本研究設計了一種具有原子分散金之零價 銅奈米立方體,稱為金銅奈米立方體(AuxCu1-x),透過原子分散金增強零價銅之連續 性類氧化酶與類芬頓反應 (O2→H2O2→•OH),而大量生成具高細胞毒性之羥基自由基,以有效增強化學動力學治療。

    首先,合成零價銅奈米立方體,接著透過伽凡尼取代藉由控制金鹽的體積製備不同金銅莫耳比且具原子分散金之AuxCu1-x (x = 0.02, 0.05, 0.1, 0.5),並於表面包覆硬脂酸以避免材料提早與氧氣進行反應。當材料通過胞吞作用進入腫瘤細胞時,硬脂酸 會與細胞膜融合而釋出裡面的AuxCu1-x,使零價銅開始氧化並降解為銅離子(Cu0 → Cu+ + e- → Cu2+ + e-, Cu0 → Cu2+ + 2e-),同時丟出電子還原氧氣生成過氧化氫(O2 + 2H+ + 2e- → H2O2),並透過銅離子與過氧化氫之類芬頓反應產生羥基自由基(Cu+ + H2O2 → Cu2+ + •OH + OH-),促使腫瘤細胞凋亡。實驗結果證實,Au0.02Cu0.98生成 •OH的 反應效率最好。DFT計算結果表明,在Au0.02Cu0.98上O2兩次被氫化 (O2→OOH, OOH→H2O2) 的活化能 (路徑1:0.76 eV, 0.72 eV、路徑2:0.96 eV, 1.08 eV) 均比Cu NCs (1.31 eV, 1.31 eV) 低,因此Au0.02Cu0.98相較於Cu NCs具有更快的H2O2 生成速率,使Au0.02Cu0.98具有更好的化學動力學治療療效。最後,材料在進入腫瘤細胞後會完全降解為離子,具生物可降解性。

    Chemodynamic therapy (CDT) is limited by endogenous H2O2 levels. To improve the insufficient therapeutic efficacy, this study reports a degradable zero-valent copper nanocubes (AuxCu1-x) with atomically dispersed golds, which exhibited cascade oxidase- and Fenton-like catalytic activities, where Au0.02Cu0.98 possess the most efficient catalytic activity. AuxCu1-x synthesized through galvanic replacement was subsequently encapsulated with stearic acid (SA) to avoid decomposition outside the cancer cells. After AuxCu1-x@SA endocytosis into cancer cells, AuxCu1-x will be released, which possessed single-atom golds assist Cu0 in activating O2 to H2O2 and simultaneously generated Cu+ for subsequently augment Fenton-like reactions for CDT. The results show that Au0.02Cu0.98 could generate larger amount of H2O2 and ·OH than Cu NCs due to single-atom golds assistance. In addition, Au0.02Cu0.98 had the best cancer treatment efficacy and finally AuxCu1-x degraded.

    摘要 I 英文延伸摘要(Extended Abstract) II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 化學動力學治療(Chemodynamic Therapy) 2 1-2-1 化學動力學治療之優勢與限制 3 1-2-2 自產過氧化氫策略(Self-supplied H2O2 Strategies) 6 1-2-3 類氧化酶催化(Oxidase-like Catalysis)產生H2O2之策略 10 1-2-4 零價銅(Zero-valent Copper, ZVC)生成H2O2與 •OH之策略 13 1-3 單原子催化劑(Single-atom Catalysts) 15 1-3-1 單原子催化劑的性能調控 17 1-3-2 單原子輔助催化性能(Single-atom-assisted Catalytic Performance) 24 1-4 伽凡尼取代反應(Galvanic Replacement Reaction) 26 1-5 生物可降解(Biodegradable)之ROS奈米材料 30 第二章 實驗藥品與儀器 33 2-1 合成奈米材料與鑑定之相關藥品 33 2-2 細胞實驗之相關藥品 34 2-3 細胞實驗之細胞株 35 2-4 實驗儀器 35 第三章 研究動機與實驗方法 37 3-1 研究動機 37 3-2 實驗方法 40 3-2-1 合成銅奈米立方體(Cu NCs) 40 3-2-2 製備金銅奈米立方體(AuxCu1-x) 40 3-2-3 修飾硬脂酸(Stearic acid, SA)於AuxCu1-x上(AuxCu1-x@SA) 41 3-2-4 X光吸收光譜分析方法 42 3-2-5 過氧化氫(H2O2)生成之偵測方法 43 3-2-5-1 不同組成之金銅奈米立方體(AuxCu1-x) 43 3-2-5-2 Au0.02Cu0.98生成過氧化氫之濃度依賴性 44 3-2-5-3 Au0.02Cu0.98生成過氧化氫之時間依賴性 44 3-2-5-4 無氧環境之過氧化氫生成測試 44 3-2-6 羥基自由基(·OH)生成之偵測方法 45 3-2-6-1 Disodium terephthalate(TPA)螢光偵測法 45 3-2-6-2 DMPO捕捉•OH之電子自旋共振(ESR)偵測法 45 3-2-7 AuxCu1-x@SA穩定性實驗 46 3-2-8 細胞毒性測試(MTT Assay) 46 3-2-9 細胞相容性之溶血實驗(Hemolysis) 48 3-2-10 細胞螢光影像分析(Confocal images) 48 3-2-10-1 活死細胞螢光影像(Live/Dead) 48 3-2-10-2 Cu+,H2O2,•OH生成之細胞螢光影像 49 3-2-11 DFT計算方法 49 第四章 實驗結果與討論 51 4-1 金銅奈米立方體(AuxCu1-x) 51 4-1-1 結構與性質鑑定 51 4-1-2 過氧化氫(H2O2)生成鑑定 59 4-1-3 羥基自由基(·OH)生成鑑定 64 4-1-3-1 Disodium terephthalate (TPA) 螢光偵測法 64 4-1-3-2 DMPO捕捉羥基自由基(DMPO-OH)之電子自旋共振(ESR)偵測法 65 4-2 硬脂酸(SA)修飾之金銅奈米立方體(AuxCu1-x @SA) 67 4-2-1 結構與性質鑑定 67 4-2-2 穩定性實驗 69 4-2-3 細胞相容性之溶血實驗 72 4-3 細胞毒性測試 (MTT Assay) 73 4-4 細胞螢光影像分析 74 4-4-1 活死細胞實驗(Live/Dead) 75 4-4-2 Cu+, H2O2, •OH 生成之細胞螢光影像 77 4-5 材料之生物分佈 80 4-6 理論計算 81 第五章 結論 87 參考文獻 88

    1. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8 (7), 579-591.
    2. Glasauer, A.; Chandel, N. S. Targeting antioxidants for cancer therapy. Biochem Pharmacol 2014, 92 (1), 90-101.
    3. Ni, K.; Lan, G.; Lin, W. Nanoscale Metal–Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy. ACS Cent. Sci. 2020, 6 (6), 861-868.
    4. Zhang, C.; Wang, X.; Du, J.; Gu, Z.; Zhao, Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. Adv. Sci. 2021, 8 (3), 2002797.
    5. Wang, N.; Zeng, Q.; Zhang, R.; Xing, D.; Zhang, T. Eradication of solid tumors by chemodynamic theranostics with H2O2-catalyzed hydroxyl radical burst. Theranostics 2021, 11 (5), 2334-2348.
    6. He, T.; Qin, X.; Jiang, C.; Jiang, D.; Lei, S.; Lin, J.; Zhu, W.-G.; Qu, J.; Huang, P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020, 10 (6), 2453-2462.
    7. Luo, B.; Chen, L.; Hong, Z.; You, X.; Huang, F.-P.; Bian, H.-D.; Zhang, L.; Zhao, S. A simple and feasible atom-precise biotinylated Cu(i) complex for tumor-targeted chemodynamic therapy. ChemComm 2021, 57 (49), 6046-6049.
    8. Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45 (23), 6597-6626.
    9. Chen, W.; Liu, J.; Zheng, C.; Bai, Q.; Gao, Q.; Zhang, Y.; Dong, K.; Lu, T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int. J. Nanomedicine 2022, 17, 2611.
    10. Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.
    11. Wang, T.; Zhang, H.; Liu, H.; Yuan, Q.; Ren, F.; Han, Y.; Sun, Q.; Li, Z.; Gao, M. Boosting H2O2-Guided Chemodynamic Therapy of Cancer by Enhancing Reaction Kinetics through Versatile Biomimetic Fenton Nanocatalysts and the Second Near-Infrared Light Irradiation. Adv. Funct. Mater. 2020, 30 (3), 1906128.
    12. Lin, L.-S.; Huang, T.; Song, J.; Ou, X.-Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J.-F.; Liu, Y.; et al. Synthesis of Copper Peroxide Nanodots for H2O2 Self-Supplying Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141 (25), 9937-9945.
    13. He, Y.-J.; Liu, X.-Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.-L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials 2020, 241, 119911.
    14. Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148 (2), 135-146.
    15. Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8 (1), 902.
    16. Zhang, C.; Bu, W.; Ni, D.; Zhang, S.; Li, Q.; Yao, Z.; Zhang, J.; Yao, H.; Wang, Z.; Shi, J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem. 2016, 128 (6), 2141-2146.
    17. Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans. 1894, 65, 899-910.
    18. Haber, F.; Weiss, J.; Pope, W. J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Math. Phys. Eng. Sci. 1934, 147 (861), 332-351.
    19. Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide. Nature 1949, 163 (4148), 692-694.
    20. Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction. Trans. Faraday Soc. 1951, 47, 462-500.
    21. Barb, W. G.; Baxendale, J. H.; George, P.; Hargrave, K. R. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.—The ferric ion reaction. Trans. Faraday Soc. 1951, 47, 591-616.
    22. Jia, C.; Guo, Y.; Wu, F.-G. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2022, 18 (6), 2103868.
    23. Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119 (8), 4881-4985.
    24. Cao, C.; Wang, X.; Yang, N.; Song, X.; Dong, X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem. Sci. 2022, 13 (4), 863-889.
    25. Zhou, Y.; Fan, S.; Feng, L.; Huang, X.; Chen, X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv. Mater. 2021, 33 (48), 2104223.
    26. Wang, X.; Zhong, X.; Liu, Z.; Cheng, L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020, 35, 100946.
    27. Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions. Angew. Chem. Int. Ed. 2019, 58 (4), 946-956.
    28. Xie, W.; Ye, J.; Guo, Z.; Lu, J.; Xu, W.; Gao, X.; Huang, H.; Hu, R.; Mao, L.; Wei, Y.; et al. TME-responded Full-biodegradable nanocatalyst for mitochondrial calcium Overload-induced hydroxyl radical bursting cancer treatment. Chem. Eng. J. 2022, 438, 135372.
    29. Song, X.; Xu, J.; Liang, C.; Chao, Y.; Jin, Q.; Wang, C.; Chen, M.; Liu, Z. Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of H2O2 and Catalase for Enhanced Radio-Immunotherapy of Cancer. Nano Lett. 2018, 18 (10), 6360-6368.
    30. Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8 (1), 357.
    31. Liu, C.; Cao, Y.; Cheng, Y.; Wang, D.; Xu, T.; Su, L.; Zhang, X.; Dong, H. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11 (1), 1735.
    32. Li, W.-P.; Su, C.-H.; Chang, Y.-C.; Lin, Y.-J.; Yeh, C.-S. Ultrasound-Induced Reactive Oxygen Species Mediated Therapy and Imaging Using a Fenton Reaction Activable Polymersome. ACS Nano 2016, 10 (2), 2017-2027.
    33. Feng, W.; Han, X.; Wang, R.; Gao, X.; Hu, P.; Yue, W.; Chen, Y.; Shi, J. Nanocatalysts-Augmented and Photothermal-Enhanced Tumor-Specific Sequential Nanocatalytic Therapy in Both NIR-I and NIR-II Biowindows. Adv. Mater. 2019, 31 (5), 1805919.
    34. Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3 (1), 41-60.
    35. Li, X.; Zhou, H.; Qi, F.; Niu, X.; Xu, X.; Qiu, F.; He, Y.; Pan, J.; Ni, L. Three hidden talents in one framework: a terephthalic acid-coordinated cupric metal–organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J Mater Chem B 2018, 6 (39), 6207-6211.
    36. Wang, D.; Wu, H.; Wang, C.; Gu, L.; Chen, H.; Jana, D.; Feng, L.; Liu, J.; Wang, X.; Xu, P.; et al. Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. Angew. Chem. Int. Ed. 2021, 60 (6), 3001-3007.
    37. Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; et al. Self-Assembled Copper–Amino Acid Nanoparticles for in Situ Glutathione “AND” H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141 (2), 849-857.
    38. Pi, L.; Cai, J.; Xiong, L.; Cui, J.; Hua, H.; Tang, D.; Mao, X. Generation of H2O2 by on-site activation of molecular dioxygen for environmental remediation applications: A review. Chem. Eng. J. 2020, 389, 123420.
    39. Dong, G.; Ai, Z.; Zhang, L. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: Promotion effect of in-situ generated carbon center radicals. Water Res. 2014, 66, 22-30.
    40. Yang, Z.; Liu, Y.; Wang, J. MOF-derived Cu0/C activation of molecular oxygen for efficient degradation of sulfamethazine. Chem. Eng. J. 2022, 427, 131961.
    41. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3 (8), 634-641.
    42. Weon, S.; Huang, D.; Rigby, K.; Chu, C.; Wu, X.; Kim, J.-H. Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Eng. 2021, 1 (2), 157-172.
    43. Xi, J.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Synthesis Strategies, Catalytic Applications, and Performance Regulation of Single-Atom Catalysts. Adv. Funct. Mater. 2021, 31 (12), 2008318.
    44. Wang, Y.; Wang, D.; Li, Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Adv. Mater. 2021, 33 (34), 2008151.
    45. Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W.; et al. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. Angew. Chem. Int. Ed. 2018, 57 (7), 1944-1948.
    46. Sumanth Kumar, D.; Jai Kumar, B.; Mahesh, H. M. Chapter 3 - Quantum Nanostructures (QDs): An Overview. In Synthesis of Inorganic Nanomaterials, Mohan Bhagyaraj, S., Oluwafemi, O. S., Kalarikkal, N., Thomas, S. Eds.; Woodhead Publishing, 2018; pp 59-88.
    47. Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K.; et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15 (10), 6521-6527.
    48. Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118 (10), 4981-5079.
    49. Lykhach, Y.; Kozlov, S. M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J.; et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15 (3), 284-288.
    50. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013, 46 (8), 1740-1748.
    51. Zhang, W.; Fu, Q.; Luo, Q.; Sheng, L.; Yang, J. Understanding Single-Atom Catalysis in View of Theory. JACS Au 2021, 1 (12), 2130-2145.
    52. Zhao, C.; Xiong, C.; Liu, X.; Qiao, M.; Li, Z.; Yuan, T.; Wang, J.; Qu, Y.; Wang, X.; Zhou, F.; et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. ChemComm 2019, 55 (16), 2285-2288.
    53. Jakub, Z.; Hulva, J.; Meier, M.; Bliem, R.; Kraushofer, F.; Setvin, M.; Schmid, M.; Diebold, U.; Franchini, C.; Parkinson, G. S. Local Structure and Coordination Define Adsorption in a Model Ir1/Fe3O4 Single-Atom Catalyst. Angew. Chem. Int. Ed. 2019, 58 (39), 13961-13968.
    54. Su, H.; Chen, L.; Chen, Y.; Si, R.; Wu, Y.; Wu, X.; Geng, Z.; Zhang, W.; Zeng, J. Single Atoms of Iron on MoS2 Nanosheets for N2 Electroreduction into Ammonia. Angew. Chem. Int. Ed. 2020, 59 (46), 20411-20416.
    55. Wang, S.; Hu, Z.; Wei, Q.; Cui, P.; Zhang, H.; Tang, W.; Sun, Y.; Duan, H.; Dai, Z.; Liu, Q.; et al. Precise Design of Atomically Dispersed Fe, Pt Dinuclear Catalysts and Their Synergistic Application for Tumor Catalytic Therapy. ACS Appl. Mater. Interfaces 2022, 14 (18), 20669-20681.
    56. Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49 (7), 2215-2264.
    57. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Adv. Mater. 2013, 25 (44), 6313-6333.
    58. Zhang, X.; Cui, G.; Feng, H.; Chen, L.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L.; Hong, S.; Wei, M. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10 (1), 5812.
    59. Peng, Y.; Geng, Z.; Zhao, S.; Wang, L.; Li, H.; Wang, X.; Zheng, X.; Zhu, J.; Li, Z.; Si, R.; et al. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds. Nano Lett. 2018, 18 (6), 3785-3791.
    60. Chen, Y.; Shi, J. Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks. Adv. Mater. 2016, 28 (17), 3235-3272.
    61. Wang, X.; Fan, L.; Cheng, L.; Sun, Y.; Wang, X.; Zhong, X.; Shi, Q.; Gong, F.; Yang, Y.; Ma, Y.; et al. Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy. iScience 2020, 23 (7), 101281.
    62. Yang, G.; Phua, S. Z. F.; Bindra, A. K.; Zhao, Y. Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. Adv. Mater. 2019, 31 (10), 1805730.
    63. Liu, C.; Wang, D.; Zhang, S.; Cheng, Y.; Yang, F.; Xing, Y.; Xu, T.; Dong, H.; Zhang, X. Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS Nano 2019, 13 (4), 4267-4277.
    64. Yang, Y.; Yang, T.; Chen, F.; Zhang, C.; Yin, B.; Yin, X.; Han, L.; Xie, Q.; Zhang, X.-B.; Song, G. Degradable Magnetic Nanoplatform with Hydroxide Ions Triggered Photoacoustic, MR Imaging, and Photothermal Conversion for Precise Cancer Theranostic. Nano Lett. 2022, 22 (8), 3228-3235.
    65. Li, Z.; Han, J.; Yu, L.; Qian, X.; Xing, H.; Lin, H.; Wu, M.; Yang, T.; Chen, Y. Synergistic Sonodynamic/Chemotherapeutic Suppression of Hepatocellular Carcinoma by Targeted Biodegradable Mesoporous Nanosonosensitizers. Adv. Funct. Mater. 2018, 28 (26), 1800145.
    66. Wang, L.; Huo, M.; Chen, Y.; Shi, J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 2018, 163, 1-13.
    67. Vreeland, E. C.; Watt, J.; Schober, G. B.; Hance, B. G.; Austin, M. J.; Price, A. D.; Fellows, B. D.; Monson, T. C.; Hudak, N. S.; Maldonado-Camargo, L.; et al. Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism. Chem. Mater. 2015, 27 (17), 6059-6066.
    68. Wang, X.; Zhong, X.; Zha, Z.; He, G.; Miao, Z.; Lei, H.; Luo, Q.; Zhang, R.; Liu, Z.; Cheng, L. Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy. Appl. Mater. Today 2020, 18, 100464.
    69. Zhao, F.; Yu, J.; Gao, W.; Yang, X.; Liang, L.; Sun, X.; Su, D.; Ying, Y.; Li, W.; Li, J.; et al. H2O2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy. RSC Adv. 2021, 11 (59), 37504-37513.
    70. Hou, S.; Gao, Y.-E.; Ma, X.; Lu, Y.; Li, X.; Cheng, J.; Wu, Y.; Xue, P.; Kang, Y.; Guo, M.; et al. Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy. Chem. Eng. J. 2021, 416, 129037.
    71. Brillas, E.; Baños, M. A.; Camps, S.; Arias, C.; Cabot, P.-L.; Garrido, J. A.; Rodríguez, R. M. Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J. Chem. 2004, 28 (2), 314-322.
    72. Li, M.; Chen, J.; Wu, W.; Fang, Y.; Dong, S. Oxidase-like MOF-818 Nanozyme with High Specificity for Catalysis of Catechol Oxidation. J. Am. Chem. Soc. 2020, 142 (36), 15569-15574.
    73. Sun, Y.; Liu, H.; Tan, X.; Li, Z.; Du, Y.; Zheng, A.; Liu, X.; Peng, N. Highly efficient redox reaction between potassium permanganate and 3,3',5,5'-tetramethylbenzidine for application in hydrogen peroxide based colorimetric assays. RSC Adv. 2019, 9 (4), 1889-1894.
    74. Page, S. E.; Arnold, W. A.; McNeill, K. Terephthalate as a probe for photochemically generated hydroxyl radical. J. Environ. Monit. 2010, 12 (9), 1658-1665.
    75. Gonzalez, D. H.; Kuang, X. M.; Scott, J. A.; Rocha, G. O.; Paulson, S. E. Terephthalate Probe for Hydroxyl Radicals: Yield of 2-Hydroxyterephthalic Acid and Transition Metal Interference. Anal. Lett. 2018, 51 (15), 2488-2497.
    76. Tahara, M.; Okubo, M. Detection of free radicals produced by a pulsed electrohydraulic discharge using electron spin resonance. J Electrostat 2014, 72 (3), 222-227.
    77. Tresp, H.; Hammer, M. U.; Winter, J.; Weltmann, K.; Reuter, S. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J. Phys. D 2013, 46 (43), 435401.
    78. Matsumoto, K.-i.; Ueno, M.; Shoji, Y.; Nakanishi, I. Estimation of the Local Concentration of the Markedly Dense Hydroxyl Radical Generation Induced by X-rays in Water. Molecules 2022, 27 (3), 592.
    79. Walger, E.; Marlin, N.; Mortha, G.; Molton, F.; Duboc, C. Hydroxyl Radical Generation by the H2O2/CuII/Phenanthroline System under Both Neutral and Alkaline Conditions: An EPR/Spin-Trapping Investigation. Appl. Sci. 2021, 11 (2), 687.
    80. Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26 (14), 12307-12313.
    81. Gokcekaya, O.; Ueda, K.; Narushima, T.; Nakano, T. Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a β-tricalcium phosphate structure. Nanoscale 2020, 12 (31), 16596-16604.
    82. Sohlberg, K.; Pennycook, T. J.; Zhou, W.; Pennycook, S. J. Insights into the physical chemistry of materials from advances in HAADF-STEM. Phys. Chem. Chem. Phys. 2015, 17 (6), 3982-4006.
    83. Liu, Q.; Zhang, Z. Platinum single-atom catalysts: a comparative review towards effective characterization. Catal. Sci. Technol. 2019, 9 (18), 4821-4834.
    84. Batson, P. E.; Dellby, N.; Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 2002, 418 (6898), 617-620.
    85. Maccagnano-Zacher, S. E.; Mkhoyan, K. A.; Kirkland, E. J.; Silcox, J. Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 2008, 108 (8), 718-726.
    86. Zhang, L.; Jiang, C.; Li, B.; Liu, Z.; Gu, B.; He, S.; Li, P.; Sun, Y.; Song, S. A core-shell Au@Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J. Nanobiotechnology 2021, 19 (1), 410.
    87. Zhu, J.; Liu, B.; Li, L.; Zeng, Z.; Zhao, W.; Wang, G.; Guan, X. Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation. J. Phys. Chem. A 2016, 120 (28), 5617-5623.
    88. Tran, H. V.; Tran, L. D.; Vu, H. D.; Thai, H. Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366 (1), 95-103.
    89. DeJarld, M.; Campbell, P. M.; Friedman, A. L.; Currie, M.; Myers-Ward, R. L.; Boyd, A. K.; Rosenberg, S. G.; Pavunny, S. P.; Daniels, K. M.; Gaskill, D. K. Surface potential and thin film quality of low work function metals on epitaxial graphene. Sci. Rep. 2018, 8 (1), 16487.
    90. Schmidt, C.; Witt, A.; Witte, G. Tailoring the Cu(100) Work Function by Substituted Benzenethiolate Self-Assembled Monolayers. J. Phys. Chem. A 2011, 115 (25), 7234-7241.
    91. Dai, S.; Huang, T.-H.; Liu, W.-I.; Hsu, C.-W.; Lee, S.-W.; Chen, T.-Y.; Wang, Y.-C.; Wang, J.-H.; Wang, K.-W. Enhanced CO2 Electrochemical Reduction Performance over Cu@AuCu Catalysts at High Noble Metal Utilization Efficiency. Nano Lett. 2021, 21 (21), 9293-9300.
    92. Wu, S.-Y.; Ho, J.-J. Adsorption, Dissociation, and Hydrogenation of CO2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations. J. Phy. Chem. C 2012, 116 (24), 13202-13209.

    下載圖示 校內:2025-02-12公開
    校外:2025-02-12公開
    QR CODE