| 研究生: |
黃禎毅 Huang, Chen-Yi |
|---|---|
| 論文名稱: |
多晶矽間的氧化層-氮矽化合物-氧化層對堆疊閘極式快閃記憶體電荷流失之影響 Effect of ONO (Oxide-Nitride-Oxide) Interpoly on Charge Loss in Stacked-Gate Flash Memory |
| 指導教授: |
洪茂峰
Houng, Mau-Phon 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 傳導機制 、電荷流失 、多晶矽間的介電質 、快閃式記憶 |
| 外文關鍵詞: | ONO interpoly, Flash memory, Conduction mechanism, Charge loss |
| 相關次數: | 點閱:150 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來, 快閃式記憶體廣泛地應用於可攜式電子產品的資料儲存上,如數位相機與筆記型電腦。雖然到目前為止在市場上有許多不同類型的快閃記憶體元件被發表,但堆疊閘極式快閃記憶體仍是低功率及高速快閃記憶體產品的主流及最有潛力的人選。然而就一個先進快內式記憶體設計來說,資料保存的可靠性是主要的考量重點。在過去,多晶矽間的氧化層-氮矽化合物-氧化層(ONO interpoly)的厚度設計是主要課題,而且多著重在薄化氮矽化合物層(Silicon nitride)與厚化頂氧化層(Top oxide)及底氧化層(Bottom oxide)的厚度。在本研究論文中,我們首先報告多晶矽間的介電質在正、負極性下的電性特性,而且會和單一氧化層介電質作一個比較。根據實驗結果,我們將提出非對稱式多晶矽間的介電質的傳導機制,此機制將著重於正、負偏壓下電子和電洞的複合效應。再者,我們會討論到多晶矽間的氧化層-氮矽化合物-氧化層對堆疊閘極式快閃記憶體電荷流失之影響。我們認為元件經過1000次循後後電荷流失量增加,這是由於陷入多晶矽間的介電質電子數目增加所致。在參考上述所提的傳導機制而改良的操作條件下,我們成功地將多晶矽間的介電質所陷入的電子數目減少,進一步地改善快閃記憶體的電荷流失現象。
Recently, the Flash memory has received much attention for application to the digital cameras and notebooks as portable mass storage. Although many different Flash cell variations have been reported and introduced into the market place so far, stacked-gate flash memory is still considered as a potential candidate and mainstream for low power and high-speed Flash memory products. However, for the design of advanced flash memory devices, the reliability of data retention is a major concern. In the past, the thickness of ONO (Oxide-Nitride-Oxide) interpoly was regarded as the key issue, and it was mainly focused on thinning the nitride and thickening the top and bottom oxide. In this thesis, first we report electrical characteristics of the ONO dielectric films under both stress polarities, and characteristics of the oxide films are taken as reference. From the experimental results, conduction mechanism of asymmetric ONO dielectric is proposed in this study, which is concentrated on hole-electron recombination under positive and negative stressing. Moreover, the effect of ONO (Oxide-Nitride-Oxide) interpoly on charge loss in stacked-gate flash memory is discussed. We claim that increase of charge loss after 1000 program/erase cycles is cause by electrons trapped in the ONO interpoly. With changed operation conditions according to conduction mechanism model, we successfully reduce the number of electrons trapped in ONO interpoly, and then decrease charge loss phenomenon of the flash memory device.
[1] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new Flash EEPROM cell using triple polysilicon technology,” IEDM Tech. Dig., pp. 464-467, 1984.
[2] R. Kazerounian, A. Bergemont, A. Roy, G. Wolsteholme, R. Irani, M. Shamay, H. Gaffur, G. A. Rezvani, L. Anderson, H. Haggag, E. Shacham, P. Kauk, P. Nielson, A. Kablanian, K. Chhor, J. Perry, R. Sethi, and B. Eitan, “Alternate Metal virtual Ground EPROM array implemented in a 0.8mm process for very high density applications,” IEDM Tech. Dig., pp. 311-314, 1991.
[3] J. VanHoudt, L. Haspeslagh, D. Wellekens, L. Deferm, G. Groeseneken, and H. E. Maes, “HIMOS––A high efficiency Flash EEPROM cell for embedded memory applications,” IEEE Trans. Electron Devices, vol. 40, no.12, pp. 2255-2263, 1993.
[4] K. Naurke, S. Yamada, E. Obi, S. Taguchi, and M. Wada, “A new Flash-erase EEPROM cell with a sidewall select-gate on its source side,” IEDM Tech. Dig., pp. 603-606, 1989.
[5] Y. Ma, C. S. Pang, K. T. Chang, S. C. Tsao, J. E. Frayer, T. Kim, K. Jo, J. Kim, I. Choi, and H. Park, “A dual-bit split-gate EEPROM (DSG) cell in contactless array for single-Vcc high density Flash memories,” IEDM Tech. Dig., pp. 57-60, 1994.
[6] H. Onoda, Y. Kunori, S. Kobayashi, M. Ohi, A. Fukumoto, N. Ajika, and H. Miyoshi, “A novel cell structure suitable for a 3 V operation, sector erase Flash memory,” IEDM Tech. Dig., pp. 599-602, 1992.
[7] Y. Yamauchi, M. Yoshimi, S. Sato, H. Tabuchi, N. Takenada, and K. Sakiyam, “A new cell structure for sub-quarter micron high density Flash memory,” IEDM Tech Dig., pp. 267-270, 1995.
[8] H. Kume, M. Kato, T. Adachi, T. Tanaka, T. Sasaki, T. Okazaki, N. Miyamoto, S. Saeki, Y. Ohji, M. Ushiyama, J. Yugami, T. Morimoto, and T. Nishida, “A 1.28mm2 contactless memory cell technology for a 3 V-only 64 Mbit EEPROM,” IEDM Tech Dig., pp.991-993, 1992.
[9] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64Mbit and future Flash memories,” IEDM Tech. Dig., pp. 19-22, 1993.
[10] F. Masuoka, M. Momodami, Y. Iwata, and R. Shirota, “New ultra high density EPROM and Flash EEPROM cell with NAND structure cell,” IEDM Tech. Dig., pp. 552-555, 1987.
[11] S. Lai, “Flash memories: Where we were and where we are going,” IEDM Tech Dig., pp. 971-973, 1998.
[12] Bohm T, Nakamura A, Aozasa H, Yamagishi M, Komatsu Y, “Development of sub-quarter MONOS (metal/oxide/nitride/oxide/semiconductor) type memory transistor,” Journal of Applied Physics, pp. 898-901, 1996.
[13] F. D. Nkansah, M. Hatails, “Effects of flash EEPROM floating gate morphology on electrical behavior of fast programming bits,” IEEE Trans. Electron Devices, vol. ED-46, no. 7, pp. 1355-1362, 1999.
[14] S. Mori, N. Arai, Y. Kaneko and K. Yoshikawa, “Polyoxide thinning limitation and superior ONO interpoly dielectric for nonvolatile memory devices,” IEEE Trans. Electron Devices, vol. ED-38, no. 2, pp. 270-277, 1991.
[15] R. Bottini, A. Cascella, F. Pio and B. Vajana, “Passivation scheme impact on retention reliability of non-volatile memory cells,” IRW, pp. 18-21, 1996.
[16] Zhi Hong Liu, P. T. Lai and Yiu Chung Cheng, “Characterization of charge trapping and high-field endurance for 15-nm thermally nitride oxides,” IEEE Trans. Electron Devices, vol. ED-38, no. 2, pp. 344-354, 1991.
[17] H. Iizuka, F. Masuoka, T. Sato, and M. Ishikawa, “Electrically alterable avalanche-injection-type MOS read-only memory with stacked-gate structure,” IEEE Trans. Electron Devices, vol. ED-23, pp. 379-387, 1976.
[18] E. Takeda, C. Y. Yang, and A. M. Hamada, Hot-Carrier Effects in MOS Devices, ch. 2. San Diego, California: Academic Press, 1995.
[19] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling in thermally grown SiO2,” Journal of Applied Physics, vol. 40, pp. 278-283, 1969.
[20] T. Hori, Gate Dielectrics and MOS ULSIs: Principles, Technologies, and Applications, ch. 3. Berlin Heidelberg: Springer-Verlag, 1997.
[21] T. Ono, T. Mori, T. Ajioka, and T. Takayashiki, “Studies of thin Poly Si Oxides for E and EEPROM,” International Electron Device Meeting Technical Digest, pp. 380-383, 1985.
[22] R. M. Anderson and D. R. Kerr, “Interface effects and high conductivity in oxides grown from polycrystalline silicon,” Applied Physics Letters, vol. 27, pp. 505-507, 1975.
[23] L. Faraone, R. D. Vibronek, and J. T. McGinn, “Characterization of thermally oxidized n+ polycrystalline silicon,” IEEE Trans. Electron Devices, vol. ED-32, pp.577-583, 1985.
[24] M. Hendriks and C. Mavero, “Phosphorous doped polysilicon for double poly structures,” Journal of the Electrochemical Society, vol. 138, pp. 1466-1474, 1991.
[25] R. I. Hedge, W. M. Paulson, and P. J. Tobin, “Surface topography of phosphorus doped polysilicon,” J. Vac. Sci. Technol. B, vol. 13, pp. 1434-1441, 1995.
[26] S. Mori, N. Arai, Y. Kaneko, Y. Ohshima, H. Araki, K. Narita, E. Sakagami, and K. Yoshikawa, “Reliability study of thin inter-poly dielectrics for non-volatile memory application,” presented at 28th IRPS, 1990.
[27] S. Mori, M. Satoh, Y. Mikata, T. Yanase, and K. Yoshikawa, “Poly-Oxide /Nitride/Oxide structures for highly reliable EPROM cells,” presented at IEEE Symposium on VLSI Technology, 1984.
[28] William D. Brown, and Joe E. Brewer, Nonvolatile Semiconductor Memory Technology, ch. 6. New York: IEEE Press, 1998.
[29] Ken Wu, Cheng-Sheng Pan, J.J. Shaw, Philip Freiberger, and George Sery, “A model for EPROM intrinsic charge loss through oxide-nitride-oxide (ONO) interpoly dielectric,” presented at 28th IRPS, 1990.
[30] E. Rosenbaum, R. Moazzami, and C. Hu, “Implications of waveform and thickness dependence of SiO2 breakdown on accelerated testing,” VLSI Technology, Systems, and Applications, pp. 214-218, 1991.
[31] S. J. Wang, I. C. Chen, H. L. Tigelaar, “Effects of poly depletion on the estimate of thin dielectric lifetime,” IEEE Electron Device Letter, vol. 12, no. 11, p. 617, 1991.
[32] K. Kobayashi, H. Miyatake, M. Hirayama, T. Higaki, and H. Abe, “Dielectric breakdown and current conduction of Oxide-Nitride-Oxide multi-layer structures,” Journal of Electrochemical Society, vol. 139, no. 6, pp. 1693-1699, 1992.
[33] K. Kobayashi, H. Miyatake, M. Hirayama, “Conduction in Thin Nitride Films and Oxide/Nitride Films,” Extended Abstracts of the 21st Conference on Solid State Devices and Materials, Tokyo, pp. 485-488, 1989.
[34] Hiang C. Chan, Viju Mathews, and Pierre C. Fazan, “Trapping, conduction, and dielectric breakdown in Si3N4 films on as-deposited rugged polysilicon,” IEEE Electron Device Letters, vol. 12, no. 9, pp. 468-470, 1991.
[35] C.L. Cha, E.F. Chor, H. Gong, A.Q. Zhang, L. Chan, J. Xie, “Evaluation of the dielectric breakdown of re-oxidized nitride oxide (ONO) in flash memory devices using constant current-stressing technique,” Microelectronics Reliability, vol. 38, pp. 1439-1446, 1998.
[36] C. F. Chen, C. Y. Wu, “A characterization model for constant current stressed voltage-time characteristics of thin thermal oxide grown on silicon substrate,” Journal of Applied Physics, vol. 60, no. 11, pp. 3926-3944, 1986.
[37] P. Olivo, B. Ricco, E. Sangiori, “Electron trapping/de-trapping within thin SiO2 films in the high field tunneling regime,” Journal of Applied Physics, vol. 54, no. 9, pp. 5267-5276, 1983.
[38] T. Wang, L. P. Chiang, N. K. Zous, T. E. Chang, and C. Huang, “Characterization of various stress-induced oxide traps in MOSFET’s by using a novel transient current technique,” Int. Electron Devices Meeting Tech. Dig., pp. 89-92, 1997.
[39] K. S. Lim and C. H. Ling, “Charge trapping in interpoly ONO film,” ICSE’98 Proc, Bangi, Malaysia, pp. 42-46, 1998.
[40] C. Papadas, G. Ghibaudo, G. Pananakakis, C. Riva, P. Ghezzi, C. Gounelle, and P. Mortini, “Retention characteristics of single-poly EEPROM cells,”in Proc. European Symp., pp. 517–522, 1991.
[41] A. Watts,“Built-in reliability for 10 FITS performance on EPROM and flash memory,”SGS-Thomson Microelectronic, TA 109, 1991.
[42] G. Q. Lo and D. L. Kwong, “Role of oxide trapped charge and generated interface states on GIDL under hot-carrier stressing,” IEDM Tech. Dig., pp.557-560, 1990.