簡易檢索 / 詳目顯示

研究生: 廖士傑
Liao, Shih-Chieh
論文名稱: 探討以共沉降法製備氧化鐵奈米顆粒氣體感測器之氣體響應
Iron Oxide Nanoparticles-Based Gas Sensors Fabricated By the Co-precipitation Method
指導教授: 莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 氣體感測器氧化鐵共沉降法奈米顆粒
外文關鍵詞: Gas sensor, iron oxide, co-precipitation, nanoparticle
相關次數: 點閱:62下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現在由於大家對空氣品質與工業環境的環保意識逐漸抬頭,如何製作出一個優良的氣體感測器受到許多學者與廠商們所廣泛研究,而隨著奈米顆粒金屬氧化物氣體感測器的問世,其氣體響應度能隨著奈米粒徑減少而有大幅的的提升。對於傳統薄膜型氣體感測器而言,奈米微粒等級材料由於粒徑小、可與偵測氣體接觸的表面積大,大大提升了感測器的靈敏度,具有相當高的應用價值,而氧化鐵正好符合了奈米顆粒結構,作為量測薄膜能有著很好的氣體偵測性質。
    在本實驗中我們選擇共沉降法去合成兩種不同型態的氧化鐵奈米顆粒,藉由適當改變製程參數就能配出氧化鐵的磁鐵礦(Fe3O4)與赤鐵礦(α-Fe2O3)型態,以進行後續氣體量測與材料研究,而共沉降法在製程上有著便宜、安全且大量生產的優點。
    結果顯示利用金屬中心爐管退火的磁鐵礦(Fe3O4)氣體感測器在對於二氧化氮的偵測上有很高的響應,而一樣是利用金屬中心爐管退火的赤鐵礦(α-Fe2O3 )氣體感測器則是對酒精有很高的選擇比,皆比利用台灣半導體研究中心的快速熱退火機台有更好的量測結果,因此對於金屬氧化物半導體材料來說,適當的選擇退火方式將能把氣體感測器的響應最佳化,而選擇正確的材料將能對特定的氣體去進行最有效的偵測。

    The increasing awareness of the environmental pollutions and industrial onsite safety demands have prompted the development of sensors in full thrust. The gas sensing properties of metal-oxide material are closely related to their composition, crystalline size, and surface morphology. Due to its small particle size and large surface area, the iron oxide nanoparticles greatly enhance the sensitivity of the sensor and has a high application value.
    In this experiment, the co-precipitation is utilized to synthesize two different types of iron oxide nanoparticles, namely, both magnetite (Fe3O4) and hematite (α-Fe2O3) are formulated for subsequent gas measurements and fundamental material characteristics evaluations by appropriately changing the relevant process parameters. The co-precipitation method is regarded as an economic way to synthesize iron oxide with the advantages of a low-cost, handling safety, and production in great quantity.
    The results show that the magnetite (Fe3O4) gas sensor annealed by muffle furnace has a high response to the detection of nitrogen dioxide, while the hematite (α-Fe2O3) gas sensor annealed by the same muffle furnace, on the other hand, has a high detecting selectivity towards ethanol. Consequently, comparatively better gas measurement results are obtained compared with those found using the rapid thermal annealing (RTA) furnace.
    For metal oxide semiconductor materials, the appropriate annealing method must be adopted to optimize the response of the gas sensor and also to choose the right material to perform the most effective detection of a particular gas.

    中文摘要 I 英文摘要 III 誌謝 XVIII 目錄 XX 表目錄 XXV 圖目錄 XXVI 第一章 緒論 1 1-1前言 1 1-2研究動機與背景 2 第二章 理論基礎與文獻回顧 7 2-1氣體感測器種類介紹 7 2-1-1電化學型(electrochemical sensor) 7 2-1-2電化學固態電解質型(solid electrolyte sensor) 8 2-1-3紅外線型(infrared sensor) 8 2-1-4觸媒燃燒型(catalytic sensor) 9 2-1-5金屬氧化物半導體型(metal oxide semiconductor sensor) 9 2-2氣體感測器的感測機制 13 2-2-1氣體感測器的感測原理介紹 13 2-2-2氣體的空乏型吸附(depletion adsorption) 18 2-2-3氣體的積蓄型吸附(accumulation adsorption) 18 2-2-4串接微晶理論 21 2-3氧化鐵材料介紹 24 2-3-1氧化鐵的磁鐵礦型態(Fe3O4)介紹與應用 24 2-3-2氧化鐵的赤鐵礦型態(α-Fe2O3)介紹與應用 26 2-4氣體感測器之性質改善與未來展望 27 第三章 實驗方法與實驗儀器介紹 29 3-1氣體感測器製備實驗步驟 29 3-1-1晶圓清洗 30 3-1-2氧化層沉積 30 3-1-3塗佈光阻 30 3-1-4曝光顯影 31 3-1-5電極沉積 31 3-1-6金屬掀離(lift-off) 31 3-1-7加熱電極保護層沉積 31 3-1-8塗佈光阻 32 3-1-9曝光顯影 32 3-1-10蝕刻出加熱電極保護層 32 3-1-11光阻去除 33 3-1-12滴定氧化鐵 33 3-1-13退火製程 33 3-1-14量測作業 33 3-2氣體感測器光罩繪製介紹 34 3-3氣體感測器元件製程儀器介紹 36 3-3-1濕式蝕刻清洗系統(wet bench) 36 3-3-2高溫及低壓爐管(horizontal furnace) 37 3-3-3破片光阻旋轉塗佈機(spin coater) 38 3-3-4光罩對準曝光系統(mask aligner) 38 3-3-5熱蒸鍍機(thermal coater) 40 3-3-6電子槍蒸鍍系統(electron beam evaporation) 41 3-3-7電漿輔助式化學氣相沉積系統(PECVD) 42 3-3-8光阻去除及濕蝕刻化學槽(pr&wet etching chemical hood) 43 3-3-9電氣加熱高溫爐(muffle furnace) 44 3-3-10快速熱退火系統(rapid thermal annealing) 45 3-4氣體感測器結構與電性量測儀器介紹 46 3-4-1薄膜測厚儀(n&k analyzer) 46 3-4-2表面輪廓量測儀(profile meter) 47 3-4-3電子顯微鏡(scanning electrons microscope) 48 3-4-4氣體感測器量測系統(gas measurement system) 49 第四章 氧化鐵配置與分析儀器介紹 52 4-1氧化鐵溶液配置流程介紹 52 4-1-1磁鐵礦(Fe3O4)氧化鐵奈米顆粒的合成方法 52 4-1-2赤鐵礦(α-Fe2O3)氧化鐵奈米顆粒的合成方法 58 4-2氧化鐵材料分析儀器介紹 62 4-2-1 X光繞射儀(x-ray diffractometer) 62 4-2-2動態光散射儀(dynamic light scattering ) 63 4-2-3紫外光-可見光-近紅外光分光光譜儀(UV-VIS-NIR spectrophotometer) 65 第五章 結果與討論 66 5-1氧化鐵奈米顆粒材料特性分析 66 5-1-1 X光繞射儀分析結果討論 66 5-1-2動態光散射儀分析結果討論 68 5-1-3紫外光-可見光-近紅外光分光光譜儀分析結果討論 72 5-2氧化鐵氣體感測器結構分析 75 5-2-1薄膜測厚儀 75 5-2-2表面輪廓量測儀 77 5-2-3電子顯微鏡 78 5-2-4 OM圖 79 5-3氧化鐵氣體感測器之氣體響應分析 80 5-3-1磁鐵礦(Fe3O4)氣體感測器利用RTA退火之量測結果 85 5-3-2磁鐵礦(Fe3O4)氣體感測器利用furnace退火之量測結果 88 5-3-3赤鐵礦(α-Fe2O3)氣體感測器利用RTA退火之量測結果 91 5-3-4赤鐵礦(α-Fe2O3)氣體感測器利用furnace退火之量測結果 93 5-4電性量測結果整體比較 96 第六章 結論與未來工作 101 6-1結論 101 6-2未來工作 103 參考文獻 105

    [1] Ho, Ghim Wei, " Gas sensor with nanostructured oxide semiconductor materials," Sci.Adv. Mater‚vol.3‚pp.150–168‚2011
    [2] C.C. Wu, M.H. Chen, C.H. Luo, G.B. Lee, "Design and fabrication issue on micromachined oxygen sensors for miniaturized energy consumption measurement systems," Sensors and Materials, vol.15, no.7, pp.341-360‚2003
    [3] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors‚vol.10‚pp.2088–2106‚2010
    [4] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V.Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases," Sens. ActuatorsB‚vol.160‚pp.580–591‚2011
    [5] J. Chen, K. Wang, R. Huang, T. Saito, Y.H. Ikuhara, T. Hirayama, et al., "Facileroute to polycrystalline Pd/nanowires using ZnO-nanowire templates forgas-sensing applications," IEEE Trans.Nanotechnol, vol.9, pp.634–639,2010
    [6] T. Wagner, T. Sauerwald, C.-D. Kohl, T. Waitz, C. Weidmann, M. Tiemann, "Gassensor based on ordered mesoporous In2O3," Thin Solid Films , vol.517, pp.6170–6175, 2009
    [7] D. Wang, P. Hu, J. Xu, X. Dong, Q. Pan, "Fast response chlorine gas sensor basedon mesoporous SnO2," Sens. Actuators B, vol.140, pp.383–389,2009
    [8] X. Feng, J. Jiang, H. Ding, R. Ding, D. Luo, J. Zhu, Y. Feng, X. Huang, "Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor, " Sens. Actuators B , vol.183, pp.526–534, 2013
    [9] X. Sun, H. Hao, H. Ji, X. Li, S. Cai, C. Zheng, "Nanocasting synthesis of In2O3with appropriate mesostructured ordering and enhanced gas-sensing property," ACS Appl. Mater. Interfaces, vol.6, pp.401–409, 2014

    [10] J.H. Jeun, D.H. Kim, S.H. Hong, "SnO2/CuO nano-hybrid foams synthesized by electrochemical deposition and their gas sensing properties," Mater. Lett ,vol.105, pp.58–61, 2013
    [11] 蔡嬪嬪, 曾明漢, 氣體感測器之簡介,應用市場,材料與社會,68期pp.50-61,1992
    [12] Y. Honga, C.H. Kima, J. Shina, K.Y. Kimb, J.S. Kimc, C.S Hwangc, J.H Leea, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate" Sensors and Actuators B, vol.232, pp.653–659, 2016
    [13] C.L. Hsua , K.C. Chen, T.Y. Tsaic , T.J. Hsuehd, "Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires," Sensors and Actuators B, vol.182, pp.190-196, 2013
    [14] K. Ihokura, "The Stannic Oxide Gas Sensor-Principles and Applications CRC press," TOKYO , 1994
    [15] W. Hellmich, Chr. Bosch-v. Braunmuhl, G. Muller, G. Sberveglieri,M. Berti, C. Perego, "The kinetics of formation of gas-sensitive RGTO-SnO2 films," Thin Solid Films , vol.263 , pp.231-237, 1995
    [16] M.D. Giulio, G.Micocci, A.Serra, A. Tepore, R. Rella, P. Siciliano, "SnO2 thin films for gas sensor prepared by r.f. reactive sputtering," Sensors and Actuators B, vol.24-25, pp.465-468 , 1995
    [17] G.J. L i, S. Kawi, "High-surface-area SnO2: A novel semiconductor- oxide gas sensor, " Materials Letters , vol.34 , pp.99-102, 1998
    [18] K. C. Song, Y. Kang, "Preparation of high surface area tin oxide powders by a homogeneous precipitation method," Materials Letters ,vol.42, pp.283-289, 2000
    [19] G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, "Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness," Sensors and Actuators B , vol.77, pp.116-121 , 2001
    [20] Th. Becker, S. Ahlers, Chr. Bosch-v. Braunmuhl, G. Muller, O. Kiesewetter, "Gas sensing properties of thin- and thick-film tin-oxide materials," Sensors and Actuators B , vol.77 , pp.55-61, 2001
    [21] Z. Tang, P. C.H. Chan, R. K. Sharma, G. Yan, I.M. Hsing and J. K.O. Sin, "Investigation and control of microcracks in tin oxide gas sensing thin-films," Sensors and Actuators B , vol.79 , pp.39-47 , 2001
    [22] Q. Kuang, C.S Lao, Z. Li, Y.Z. Liu, Z.X. Xie,L.S. Zheng, and Z.L. Wang, "Enhancing the Photon- and Gas-Sensing Properties of a Single SnO2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization," J. Phys. Chem. C , vol.112 , pp.11539–11544 , 2008
    [23] X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li "Highly Sensitive WO3 Hollow-Sphere Gas Sensors," Inorg. Chem, vol.43 , pp.5442−5449 , 2004
    [24] M. Hubnera, C.E. Simionb, A. Tomescu-Stanoiub, S. Pokhrela,1, N. Barsana, U. Weimara "Influence of humidity on CO sensing with p-type CuO thick film gas sensors," Sensors and Actuators B, vol.153, pp.347-353 , 2011
    [25] J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li "Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors," Chem. Mater , vol.18 , pp.867-871 , 2006
    [26] K. Siroky, J. Jiresova, L. Hudec "Iron oxide thin film gas sensor," Thin Solid Films , vol.245 , pp.211-214 , 1995
    [27] L. Lia, Y. Huanga, S. Zhanga, W. Chena, Z. Kuanga, D. Aoa, W. Liua, Y. Fu "A fast response & recovery H2S gas sensor based onα-Fe2O3 nanoparticles with ppb level detection," Journal of Hazardous Materials , vol.300 , pp.167–174 , 2015
    [28] N.T.A. Thua, N. D. Cuongb, L.C. Nguyena, D. Q. Khieub, P. C. Namd, N.V. Toane, C.M. Hunge, N.V. Hieue, "Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor," Sensors and Actuators B , vol.255 , pp.3275–3283 , 2018
    [29] P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, "Synthesis and gas sensing properties of bundle-likeα-Fe2O3 nanorods," Sensors and Actuators B , vol.156 , pp.368-374 , 2011
    [30] Z. Ai, K. Deng, Q. Wan, L. Zhang, and S. Lee "Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe3O4 Nanoroses," J. Phys. Chem. C , vol.114 , pp.6237–6242 , 2010
    [31] S. Caponec, M. Benkovicovaa, A. Forleoc, M. Jergela, M. Grazia Manerac, P. Siffalovica, A. Taurinoc, E. Majkovaa, P. Sicilianoc, I. Vavrab, S. Lubya, R. Rellaca, "Palladium/γ-Fe2O3nanoparticle mixtures for acetone and NO2 gas sensors Simonetta," Sensors and Actuators B , vol.243 , pp.895–903 , 2017
    [32] R. K. Sonker, B.C. Yadav,"Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection," Journal of the Taiwan Institute of Chemical Engineers , vol.77 , pp.276–281 , 2017
    [33] L. Huang, H. Fan, "Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas -sensing properties," Sensors and Actuators B , vol.171-172 , pp.1257-1263 , 2012
    [34] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, "Hierarchicalα-Fe2O3/NiO Composites with a Hollow Structure for a Gas Sensor," ACS Appl. Mater. Interfaces , vol.6 , pp.12031−12037 , 2014
    [35] W. Tan, J. Tan, L. Fan, Z. Yu, J. Qian, X. Huang, "Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor," Sensors and Actuators B , vol.256 , pp.282–293 , 2018
    [36] Q. Wei, P. Song, Z. Yang, Q. Wang, "Hierarchical assembly of Fe2O3 nanorods on SnO2 nanospheres with enhanced ethanol sensing properties," Physica E: Low-dimensional Systems and Nanostructures, vol.103 , pp.156-163 , 2018
    [37] Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, "Branch-like Hierarchical Heterostructure (α-Fe2O3/TiO2): A Novel Sensing Material for Trimethylamine Gas Sensor," ACS Appl. Mater. Interfaces , vol.5 , pp.12310-12316 , 2013
    [38] H.J. Kim, J.H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors : Overview," Sensors and Actuators B , vol.192 , pp.607– 627 , 2014
    [39] 奈米半導體材料之特殊氣體感測性質, 林鴻明, 曾世杰, 工業材料,
    157期, pp.163-169 , 2000
    [40] Gas sensors: Principle, operation and developments, edited by G. Sberveglieri Kluwer Academic Publishers, Netherlands p. 89-186 , 1992
    [41] 感測器原理與應用技術, 賴昇, 小林哲二, 全華(1986)144-153
    [42] M. Chelvayohan, Patented Virtual ReferenceTM Infrared Gas Sensor, Sensor design engineer Texas Instruments, Inc. 1999.
    [43] J. Fraden: Handbook of modern sensors, Springer, 3-rd ed., USA (2004).
    [44] 黃克定:感測器及周邊電路, 文笙 (1990) 第 7 章.
    [45] T. Sahm, A. Gurlo, N. Barsan, U. Weimar "Basics of oxygen and SnO2 interaction;work function change and conductivity measurements," Sensors and Actuators B , vol.118 , pp.78–83 , 2006
    [46] S. Novikov, A. Haarahiltunen, P. Kuivalainen, "Transient characterization techniques for resistive metal-oxide gas sensors," Sens. Actuators B , vol. 159 , pp.12–26 , 2011
    [47] Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6), June,
    (1998) 18
    [48] H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53(1982) 4448
    [49] S.M. Sze: Semiconductor sensors, John Wiley and Sons, (1994) 387-393
    [50] H. Ohnishi, H. Saski, T. Matsumoto and M. Ippommatsu, "Sensing mechanism of SnO2 thin film gas sensors, " Sensors and Actuators B ,vol. 13-14 , pp.677-678 , 1993
    [51] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements, " Sensors and Actuators B , vol. 3 , pp.147-155 , 1991
    [52] N. Barsan, M. Schweizer-Berberich and W. Göpel, "Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: astatus report," Fresenius Journal of Analytical Chemistry , vol. 365 , pp.287-304 , 1999
    [53] https://www.itsfun.com.tw/四氧化三鐵/wiki-1053813-5409103
    [54] D. Yu, X. Sun, J. Zou, Z. Wang, F. Wang, and K. Tang, "Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres," J. Phys. Chem. B , vol.110, pp.21667-21671 , 2006
    [55] G. Lv, F. He, X. Wang, F. Gao, G. Zhang, T. Wang, H. Jiang, C. Wu, D. Guo, X. Li, B. Chen, and Z. Gu "Novel Nanocomposite of Nano Fe3O4 and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells," Langmuir , vol.24, pp.2151-2156 , 2008

    [56] Z. Li, B. Tan, M. Allix, A.I. Cooper, and M.J. Rosseinsky "Direct Coprecipitation Route to Monodisperse Dual-Functionalized Magnetic Iron Oxide Nanocrystals Without Size Selection," Small , vol.4, No.2, pp.231–239 , 2008
    [57] D. Zhang, Z. Liu, S. Han , C. Li, B Lei, M.P. Stewart, J.M. Tour, and C. Zhou "Magnetite (Fe3O4) Core−Shell Nanowires: Synthesis and Magnetoresistance," NANO LETTERS , Vol. 4 , No. 11 , pp.2151-2155 , 2004
    [58] R.A. Reziq, H. Alper, D. Wang, and M.L. Post "Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts," J. AM. CHEM. SOC , vol.128 , pp.5279-5282 , 2006
    [59] E.K. Pasandideh1, B. Kakavandi , S. Nasseri1, A. H. Mahvi1, R.Nabizadeh1, A. Esrafili ,and R.R. Kalantary "Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal ," Karimi Pasandideh et al. Journal of Environmental Health Science & Engineering , 2016
    [60] D. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, and H.G. Zheng "Fabrication and Characterization of Fe3O4 Octahedrons via an EDTA-Assisted Route," Received June 26, 2006; ReVised Manuscript ReceiVed June 13, 2007
    [61] Y. Cong, G. Wang, M. Xiong, Y. Huang, Z. Hong, D. Wang, J. Li, and L. Li "A Facile Interfacial Reaction Route To Prepare Magnetic Hollow Spheres with Tunable Shell Thickness ," Langmuir , vol.24 , pp.6624-6629 , 2008
    [62] S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, and W. Zhou, "Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties," J. Phys. Chem. C , vol. 112, pp.4836-4843 , 2008
    [63] J. Park, K. An, Y.Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang and T. Hyeon "Ultra-large-scale syntheses of monodisperse nanocrystals," nature materials , vol. 3 , 2004

    [64] M.Niyaifar , M.Asan, J.Amighian "Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gel method," Journal of Magnetism and Magnetic Materials , vol.334 , pp. 41–44 , 2013
    [65] S.A. Kulkarnia, P.S. Sawadh, P.K. Palei, K.K. Kokatea "Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles," Ceramics International , vol. 40 , pp.1945–1949 , 2014
    [66] https://www.wikiwand.com/zh-hk/氧化鐵
    [67] J. Wang , X. Shao , Q. Zhang , G. Tiana, X. Ji , W. Bao "Preparation of mesoporous magnetic Fe2O3 nanoparticle and its application for organic dyes removal," Journal of Molecular Liquids , vol. 248 , pp.13-18 , 2017
    [68] S. Kalantari, M. Yousefpour, Z. Taherian "Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals," Rare Met. , vol. 36, no.12 , pp.942–950 , 2017
    [69] S. Zhang, P. Zhang, A. Xie, S. Li, F. Huang, Y. Shen "A Novel 2D Porous Print Fabric-like α-Fe2O3 Sheet with High Performance as the Anode Material for Lithium-ion Battery," Electrochimica Acta , vol. 212 , pp.912–920 , 2016
    [70] H. Cui , Y. Liu, W. Ren "Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles," Advanced Powder Technology , vol. 24 , pp.93-97 , 2013
    [71] S.T. Navalea, D.K. Bandgara, S.R. Nalagea, G.D. Khuspea, M.A. Chougulea, Y.D. Kolekarb , S. Senc, V.B. Patila, "Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications," Ceramics International , vol.39 , pp.6453-6460 , 2013
    [72] X. Liao , J. Zhu , W. Zhong , H.Y. Chen "Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation," Materials Letters , vol.50 , pp.341–346 , 2001

    [73] N.D. Cuong , T. T. Hoa , D.Q. Khieu , T.D. Lam , N.D. Hoa , N.V. Hieu "Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan," Journal of Alloys and Compounds , vol.523 , pp.120-126 , 2012
    [74] 朱柏豪‚"表面輪廓儀的用途‚"奈米通訊Nano communication‚vol.22‚No.1‚pp.31-33
    [75] Beckman Coulter user manual.

    [76] D.F. Cox, T.B. Fryberger and S. Semancik, "Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface," Physical Review B , vol.38 , pp.2072-2083 , 1988
    [77] E. Wahlstrom, E.K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Lagsgaard, I. Stensgaard and F. Besenbacher, "Electron Transfer– Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface," Science , vol. 303 , pp.511-513 , 2004
    [78] M. Gillet, C. Lemire, E. Gillet, K. Aguir, "The role of surface oxygen vacancies upon WO3 conductivity," Surface Science , vol.523-535 , pp.519-525 , 2003
    [79] H. Norenberg, G.A.D. Briggs, "Defect formation on CeO2 (111) surfaces after annealing studied by STM," Surface Science , vol.424 , pp.352-355 , 1999
    [80] H. Nörenberg and G.A.D. Briggs, "Defect Structure of Nonstoichiometric CeO2 (111) Surfaces Studied by Scanning Tunneling Microscopy," Physical Review Letters , vol.79 , pp.4222-4225 , 1997
    [81] C. Cantalini, M. Pelino, H.T. Sun, M. Faccio, S. Santucci, L. Lozzi,
    M. Passaxantando, "Cross sensitivity and stability of NO2 sensors from WO3 thin film," Sensors and Actuators B , vol.35 , pp.112-118 , 1996

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE