| 研究生: |
廖士傑 Liao, Shih-Chieh |
|---|---|
| 論文名稱: |
探討以共沉降法製備氧化鐵奈米顆粒氣體感測器之氣體響應 Iron Oxide Nanoparticles-Based Gas Sensors Fabricated By the Co-precipitation Method |
| 指導教授: |
莊文魁
Chuang, Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 氣體感測器 、氧化鐵 、共沉降法 、奈米顆粒 |
| 外文關鍵詞: | Gas sensor, iron oxide, co-precipitation, nanoparticle |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現在由於大家對空氣品質與工業環境的環保意識逐漸抬頭,如何製作出一個優良的氣體感測器受到許多學者與廠商們所廣泛研究,而隨著奈米顆粒金屬氧化物氣體感測器的問世,其氣體響應度能隨著奈米粒徑減少而有大幅的的提升。對於傳統薄膜型氣體感測器而言,奈米微粒等級材料由於粒徑小、可與偵測氣體接觸的表面積大,大大提升了感測器的靈敏度,具有相當高的應用價值,而氧化鐵正好符合了奈米顆粒結構,作為量測薄膜能有著很好的氣體偵測性質。
在本實驗中我們選擇共沉降法去合成兩種不同型態的氧化鐵奈米顆粒,藉由適當改變製程參數就能配出氧化鐵的磁鐵礦(Fe3O4)與赤鐵礦(α-Fe2O3)型態,以進行後續氣體量測與材料研究,而共沉降法在製程上有著便宜、安全且大量生產的優點。
結果顯示利用金屬中心爐管退火的磁鐵礦(Fe3O4)氣體感測器在對於二氧化氮的偵測上有很高的響應,而一樣是利用金屬中心爐管退火的赤鐵礦(α-Fe2O3 )氣體感測器則是對酒精有很高的選擇比,皆比利用台灣半導體研究中心的快速熱退火機台有更好的量測結果,因此對於金屬氧化物半導體材料來說,適當的選擇退火方式將能把氣體感測器的響應最佳化,而選擇正確的材料將能對特定的氣體去進行最有效的偵測。
The increasing awareness of the environmental pollutions and industrial onsite safety demands have prompted the development of sensors in full thrust. The gas sensing properties of metal-oxide material are closely related to their composition, crystalline size, and surface morphology. Due to its small particle size and large surface area, the iron oxide nanoparticles greatly enhance the sensitivity of the sensor and has a high application value.
In this experiment, the co-precipitation is utilized to synthesize two different types of iron oxide nanoparticles, namely, both magnetite (Fe3O4) and hematite (α-Fe2O3) are formulated for subsequent gas measurements and fundamental material characteristics evaluations by appropriately changing the relevant process parameters. The co-precipitation method is regarded as an economic way to synthesize iron oxide with the advantages of a low-cost, handling safety, and production in great quantity.
The results show that the magnetite (Fe3O4) gas sensor annealed by muffle furnace has a high response to the detection of nitrogen dioxide, while the hematite (α-Fe2O3) gas sensor annealed by the same muffle furnace, on the other hand, has a high detecting selectivity towards ethanol. Consequently, comparatively better gas measurement results are obtained compared with those found using the rapid thermal annealing (RTA) furnace.
For metal oxide semiconductor materials, the appropriate annealing method must be adopted to optimize the response of the gas sensor and also to choose the right material to perform the most effective detection of a particular gas.
[1] Ho, Ghim Wei, " Gas sensor with nanostructured oxide semiconductor materials," Sci.Adv. Mater‚vol.3‚pp.150–168‚2011
[2] C.C. Wu, M.H. Chen, C.H. Luo, G.B. Lee, "Design and fabrication issue on micromachined oxygen sensors for miniaturized energy consumption measurement systems," Sensors and Materials, vol.15, no.7, pp.341-360‚2003
[3] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors‚vol.10‚pp.2088–2106‚2010
[4] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V.Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases," Sens. ActuatorsB‚vol.160‚pp.580–591‚2011
[5] J. Chen, K. Wang, R. Huang, T. Saito, Y.H. Ikuhara, T. Hirayama, et al., "Facileroute to polycrystalline Pd/nanowires using ZnO-nanowire templates forgas-sensing applications," IEEE Trans.Nanotechnol, vol.9, pp.634–639,2010
[6] T. Wagner, T. Sauerwald, C.-D. Kohl, T. Waitz, C. Weidmann, M. Tiemann, "Gassensor based on ordered mesoporous In2O3," Thin Solid Films , vol.517, pp.6170–6175, 2009
[7] D. Wang, P. Hu, J. Xu, X. Dong, Q. Pan, "Fast response chlorine gas sensor basedon mesoporous SnO2," Sens. Actuators B, vol.140, pp.383–389,2009
[8] X. Feng, J. Jiang, H. Ding, R. Ding, D. Luo, J. Zhu, Y. Feng, X. Huang, "Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor, " Sens. Actuators B , vol.183, pp.526–534, 2013
[9] X. Sun, H. Hao, H. Ji, X. Li, S. Cai, C. Zheng, "Nanocasting synthesis of In2O3with appropriate mesostructured ordering and enhanced gas-sensing property," ACS Appl. Mater. Interfaces, vol.6, pp.401–409, 2014
[10] J.H. Jeun, D.H. Kim, S.H. Hong, "SnO2/CuO nano-hybrid foams synthesized by electrochemical deposition and their gas sensing properties," Mater. Lett ,vol.105, pp.58–61, 2013
[11] 蔡嬪嬪, 曾明漢, 氣體感測器之簡介,應用市場,材料與社會,68期pp.50-61,1992
[12] Y. Honga, C.H. Kima, J. Shina, K.Y. Kimb, J.S. Kimc, C.S Hwangc, J.H Leea, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate" Sensors and Actuators B, vol.232, pp.653–659, 2016
[13] C.L. Hsua , K.C. Chen, T.Y. Tsaic , T.J. Hsuehd, "Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires," Sensors and Actuators B, vol.182, pp.190-196, 2013
[14] K. Ihokura, "The Stannic Oxide Gas Sensor-Principles and Applications CRC press," TOKYO , 1994
[15] W. Hellmich, Chr. Bosch-v. Braunmuhl, G. Muller, G. Sberveglieri,M. Berti, C. Perego, "The kinetics of formation of gas-sensitive RGTO-SnO2 films," Thin Solid Films , vol.263 , pp.231-237, 1995
[16] M.D. Giulio, G.Micocci, A.Serra, A. Tepore, R. Rella, P. Siciliano, "SnO2 thin films for gas sensor prepared by r.f. reactive sputtering," Sensors and Actuators B, vol.24-25, pp.465-468 , 1995
[17] G.J. L i, S. Kawi, "High-surface-area SnO2: A novel semiconductor- oxide gas sensor, " Materials Letters , vol.34 , pp.99-102, 1998
[18] K. C. Song, Y. Kang, "Preparation of high surface area tin oxide powders by a homogeneous precipitation method," Materials Letters ,vol.42, pp.283-289, 2000
[19] G. Sakai, N.S. Baik, N. Miura, N. Yamazoe, "Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness," Sensors and Actuators B , vol.77, pp.116-121 , 2001
[20] Th. Becker, S. Ahlers, Chr. Bosch-v. Braunmuhl, G. Muller, O. Kiesewetter, "Gas sensing properties of thin- and thick-film tin-oxide materials," Sensors and Actuators B , vol.77 , pp.55-61, 2001
[21] Z. Tang, P. C.H. Chan, R. K. Sharma, G. Yan, I.M. Hsing and J. K.O. Sin, "Investigation and control of microcracks in tin oxide gas sensing thin-films," Sensors and Actuators B , vol.79 , pp.39-47 , 2001
[22] Q. Kuang, C.S Lao, Z. Li, Y.Z. Liu, Z.X. Xie,L.S. Zheng, and Z.L. Wang, "Enhancing the Photon- and Gas-Sensing Properties of a Single SnO2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization," J. Phys. Chem. C , vol.112 , pp.11539–11544 , 2008
[23] X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li "Highly Sensitive WO3 Hollow-Sphere Gas Sensors," Inorg. Chem, vol.43 , pp.5442−5449 , 2004
[24] M. Hubnera, C.E. Simionb, A. Tomescu-Stanoiub, S. Pokhrela,1, N. Barsana, U. Weimara "Influence of humidity on CO sensing with p-type CuO thick film gas sensors," Sensors and Actuators B, vol.153, pp.347-353 , 2011
[25] J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li "Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors," Chem. Mater , vol.18 , pp.867-871 , 2006
[26] K. Siroky, J. Jiresova, L. Hudec "Iron oxide thin film gas sensor," Thin Solid Films , vol.245 , pp.211-214 , 1995
[27] L. Lia, Y. Huanga, S. Zhanga, W. Chena, Z. Kuanga, D. Aoa, W. Liua, Y. Fu "A fast response & recovery H2S gas sensor based onα-Fe2O3 nanoparticles with ppb level detection," Journal of Hazardous Materials , vol.300 , pp.167–174 , 2015
[28] N.T.A. Thua, N. D. Cuongb, L.C. Nguyena, D. Q. Khieub, P. C. Namd, N.V. Toane, C.M. Hunge, N.V. Hieue, "Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor," Sensors and Actuators B , vol.255 , pp.3275–3283 , 2018
[29] P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, "Synthesis and gas sensing properties of bundle-likeα-Fe2O3 nanorods," Sensors and Actuators B , vol.156 , pp.368-374 , 2011
[30] Z. Ai, K. Deng, Q. Wan, L. Zhang, and S. Lee "Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe3O4 Nanoroses," J. Phys. Chem. C , vol.114 , pp.6237–6242 , 2010
[31] S. Caponec, M. Benkovicovaa, A. Forleoc, M. Jergela, M. Grazia Manerac, P. Siffalovica, A. Taurinoc, E. Majkovaa, P. Sicilianoc, I. Vavrab, S. Lubya, R. Rellaca, "Palladium/γ-Fe2O3nanoparticle mixtures for acetone and NO2 gas sensors Simonetta," Sensors and Actuators B , vol.243 , pp.895–903 , 2017
[32] R. K. Sonker, B.C. Yadav,"Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection," Journal of the Taiwan Institute of Chemical Engineers , vol.77 , pp.276–281 , 2017
[33] L. Huang, H. Fan, "Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas -sensing properties," Sensors and Actuators B , vol.171-172 , pp.1257-1263 , 2012
[34] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, "Hierarchicalα-Fe2O3/NiO Composites with a Hollow Structure for a Gas Sensor," ACS Appl. Mater. Interfaces , vol.6 , pp.12031−12037 , 2014
[35] W. Tan, J. Tan, L. Fan, Z. Yu, J. Qian, X. Huang, "Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor," Sensors and Actuators B , vol.256 , pp.282–293 , 2018
[36] Q. Wei, P. Song, Z. Yang, Q. Wang, "Hierarchical assembly of Fe2O3 nanorods on SnO2 nanospheres with enhanced ethanol sensing properties," Physica E: Low-dimensional Systems and Nanostructures, vol.103 , pp.156-163 , 2018
[37] Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, "Branch-like Hierarchical Heterostructure (α-Fe2O3/TiO2): A Novel Sensing Material for Trimethylamine Gas Sensor," ACS Appl. Mater. Interfaces , vol.5 , pp.12310-12316 , 2013
[38] H.J. Kim, J.H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors : Overview," Sensors and Actuators B , vol.192 , pp.607– 627 , 2014
[39] 奈米半導體材料之特殊氣體感測性質, 林鴻明, 曾世杰, 工業材料,
157期, pp.163-169 , 2000
[40] Gas sensors: Principle, operation and developments, edited by G. Sberveglieri Kluwer Academic Publishers, Netherlands p. 89-186 , 1992
[41] 感測器原理與應用技術, 賴昇, 小林哲二, 全華(1986)144-153
[42] M. Chelvayohan, Patented Virtual ReferenceTM Infrared Gas Sensor, Sensor design engineer Texas Instruments, Inc. 1999.
[43] J. Fraden: Handbook of modern sensors, Springer, 3-rd ed., USA (2004).
[44] 黃克定:感測器及周邊電路, 文笙 (1990) 第 7 章.
[45] T. Sahm, A. Gurlo, N. Barsan, U. Weimar "Basics of oxygen and SnO2 interaction;work function change and conductivity measurements," Sensors and Actuators B , vol.118 , pp.78–83 , 2006
[46] S. Novikov, A. Haarahiltunen, P. Kuivalainen, "Transient characterization techniques for resistive metal-oxide gas sensors," Sens. Actuators B , vol. 159 , pp.12–26 , 2011
[47] Yasuhiro Schimizu and Makoto Egashira, MRS Bulletin, 24(6), June,
(1998) 18
[48] H. Ogawan, M. Nishikawa, and A. Abe, J. Appl. Phys. 53(1982) 4448
[49] S.M. Sze: Semiconductor sensors, John Wiley and Sons, (1994) 387-393
[50] H. Ohnishi, H. Saski, T. Matsumoto and M. Ippommatsu, "Sensing mechanism of SnO2 thin film gas sensors, " Sensors and Actuators B ,vol. 13-14 , pp.677-678 , 1993
[51] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements, " Sensors and Actuators B , vol. 3 , pp.147-155 , 1991
[52] N. Barsan, M. Schweizer-Berberich and W. Göpel, "Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: astatus report," Fresenius Journal of Analytical Chemistry , vol. 365 , pp.287-304 , 1999
[53] https://www.itsfun.com.tw/四氧化三鐵/wiki-1053813-5409103
[54] D. Yu, X. Sun, J. Zou, Z. Wang, F. Wang, and K. Tang, "Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres," J. Phys. Chem. B , vol.110, pp.21667-21671 , 2006
[55] G. Lv, F. He, X. Wang, F. Gao, G. Zhang, T. Wang, H. Jiang, C. Wu, D. Guo, X. Li, B. Chen, and Z. Gu "Novel Nanocomposite of Nano Fe3O4 and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells," Langmuir , vol.24, pp.2151-2156 , 2008
[56] Z. Li, B. Tan, M. Allix, A.I. Cooper, and M.J. Rosseinsky "Direct Coprecipitation Route to Monodisperse Dual-Functionalized Magnetic Iron Oxide Nanocrystals Without Size Selection," Small , vol.4, No.2, pp.231–239 , 2008
[57] D. Zhang, Z. Liu, S. Han , C. Li, B Lei, M.P. Stewart, J.M. Tour, and C. Zhou "Magnetite (Fe3O4) Core−Shell Nanowires: Synthesis and Magnetoresistance," NANO LETTERS , Vol. 4 , No. 11 , pp.2151-2155 , 2004
[58] R.A. Reziq, H. Alper, D. Wang, and M.L. Post "Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts," J. AM. CHEM. SOC , vol.128 , pp.5279-5282 , 2006
[59] E.K. Pasandideh1, B. Kakavandi , S. Nasseri1, A. H. Mahvi1, R.Nabizadeh1, A. Esrafili ,and R.R. Kalantary "Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal ," Karimi Pasandideh et al. Journal of Environmental Health Science & Engineering , 2016
[60] D. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, and H.G. Zheng "Fabrication and Characterization of Fe3O4 Octahedrons via an EDTA-Assisted Route," Received June 26, 2006; ReVised Manuscript ReceiVed June 13, 2007
[61] Y. Cong, G. Wang, M. Xiong, Y. Huang, Z. Hong, D. Wang, J. Li, and L. Li "A Facile Interfacial Reaction Route To Prepare Magnetic Hollow Spheres with Tunable Shell Thickness ," Langmuir , vol.24 , pp.6624-6629 , 2008
[62] S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, and W. Zhou, "Facile Route for the Fabrication of Porous Hematite Nanoflowers: Its Synthesis, Growth Mechanism, Application in the Lithium Ion Battery, and Magnetic and Photocatalytic Properties," J. Phys. Chem. C , vol. 112, pp.4836-4843 , 2008
[63] J. Park, K. An, Y.Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang and T. Hyeon "Ultra-large-scale syntheses of monodisperse nanocrystals," nature materials , vol. 3 , 2004
[64] M.Niyaifar , M.Asan, J.Amighian "Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gel method," Journal of Magnetism and Magnetic Materials , vol.334 , pp. 41–44 , 2013
[65] S.A. Kulkarnia, P.S. Sawadh, P.K. Palei, K.K. Kokatea "Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles," Ceramics International , vol. 40 , pp.1945–1949 , 2014
[66] https://www.wikiwand.com/zh-hk/氧化鐵
[67] J. Wang , X. Shao , Q. Zhang , G. Tiana, X. Ji , W. Bao "Preparation of mesoporous magnetic Fe2O3 nanoparticle and its application for organic dyes removal," Journal of Molecular Liquids , vol. 248 , pp.13-18 , 2017
[68] S. Kalantari, M. Yousefpour, Z. Taherian "Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals," Rare Met. , vol. 36, no.12 , pp.942–950 , 2017
[69] S. Zhang, P. Zhang, A. Xie, S. Li, F. Huang, Y. Shen "A Novel 2D Porous Print Fabric-like α-Fe2O3 Sheet with High Performance as the Anode Material for Lithium-ion Battery," Electrochimica Acta , vol. 212 , pp.912–920 , 2016
[70] H. Cui , Y. Liu, W. Ren "Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles," Advanced Powder Technology , vol. 24 , pp.93-97 , 2013
[71] S.T. Navalea, D.K. Bandgara, S.R. Nalagea, G.D. Khuspea, M.A. Chougulea, Y.D. Kolekarb , S. Senc, V.B. Patila, "Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications," Ceramics International , vol.39 , pp.6453-6460 , 2013
[72] X. Liao , J. Zhu , W. Zhong , H.Y. Chen "Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation," Materials Letters , vol.50 , pp.341–346 , 2001
[73] N.D. Cuong , T. T. Hoa , D.Q. Khieu , T.D. Lam , N.D. Hoa , N.V. Hieu "Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan," Journal of Alloys and Compounds , vol.523 , pp.120-126 , 2012
[74] 朱柏豪‚"表面輪廓儀的用途‚"奈米通訊Nano communication‚vol.22‚No.1‚pp.31-33
[75] Beckman Coulter user manual.
[76] D.F. Cox, T.B. Fryberger and S. Semancik, "Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface," Physical Review B , vol.38 , pp.2072-2083 , 1988
[77] E. Wahlstrom, E.K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Lagsgaard, I. Stensgaard and F. Besenbacher, "Electron Transfer– Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface," Science , vol. 303 , pp.511-513 , 2004
[78] M. Gillet, C. Lemire, E. Gillet, K. Aguir, "The role of surface oxygen vacancies upon WO3 conductivity," Surface Science , vol.523-535 , pp.519-525 , 2003
[79] H. Norenberg, G.A.D. Briggs, "Defect formation on CeO2 (111) surfaces after annealing studied by STM," Surface Science , vol.424 , pp.352-355 , 1999
[80] H. Nörenberg and G.A.D. Briggs, "Defect Structure of Nonstoichiometric CeO2 (111) Surfaces Studied by Scanning Tunneling Microscopy," Physical Review Letters , vol.79 , pp.4222-4225 , 1997
[81] C. Cantalini, M. Pelino, H.T. Sun, M. Faccio, S. Santucci, L. Lozzi,
M. Passaxantando, "Cross sensitivity and stability of NO2 sensors from WO3 thin film," Sensors and Actuators B , vol.35 , pp.112-118 , 1996