| 研究生: |
施慶彬 Shih, Ching-Pin |
|---|---|
| 論文名稱: |
基因重組骨粘連蛋白對臍帶間質幹細胞、 牙髓幹細胞與脂肪幹細胞於體外增生影響 The effect of recombinant human SPARC on the proliferation of umbilical cord mesenchymal stem cells, dental pulp stem cells and adipose derived stem cells in vitro |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 骨粘連蛋白 、間葉幹細胞 、臍帶間質幹細胞 、牙髓幹細胞 、脂肪幹細胞 、增生 、自我更新 、硬骨分化 、脂肪分化 |
| 外文關鍵詞: | SPARC, Osteonectin, BM-40, Mesenchymal stem cell, MSC, Dental pulp stem cell, DPSC, Umbilical cord mesenchymal stem cell, UCMSC, Adipose-derived stem cell, ADSC, proliferation, self-renewal, osteogenesis, adipogenesis |
| 相關次數: | 點閱:295 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨粘連蛋白(SPARC),為細胞基質醣蛋白,參與調控細胞增生、遷移、分化、胚胎發育、血管新生及骨質形成等功能。我們發現於體外進行含有 10 % 胎牛血清情況下培養,添加人類基因重組骨粘連蛋白(recombinant SPARC,rSPARC)對於人類脂肪幹細胞具有促進其增生的效果。P4 人類脂肪幹細胞經添加 rSPARC 培養七天後,利用 MTS 檢測細胞活性,10 μg/mL rSPARC 添加組對照控制組增加多達 80% 細胞活性,另外 10 μg/mL rSPARC 處理的組別也有較多的 BrdU 擷取量。rSPARC 對於臍帶間質幹細胞與牙髓幹細胞在含 10 % 血清培養條件下細胞增生的影響不如脂肪幹細胞明顯。
rSPARC 對於脂肪幹細胞、臍帶間質幹細胞與牙髓幹細胞無血清培養條件下,經MTS法、BrdU法發現細胞活性與增生能力都有增加的效果,且 rSPARC 對促細胞增生的效果有隨著細胞代數增加而有減少的趨勢,另外經由直接細胞計數也有一致的結果。
此外在不含分化因子的條件下,僅添加 rSPARC 於培養基中,三種間葉幹細胞分別培養 14 天後,並不會誘導脂肪幹細胞、牙髓幹細胞與臍帶間質幹細胞進行脂肪或硬骨分化。脂肪幹細胞、牙髓幹細胞與臍帶間質幹細胞經添加rSPARC培養兩週後,仍保有脂肪分化與硬骨分化潛能。
rSPARC 具促進間葉幹細胞增生效果,但不為一個分化誘導因子,不會誘導其走向脂肪或硬骨分化,且經過 rSPARC處理兩週後,間葉幹細胞能維持其分化潛能,顯示rSPARC具有促進間葉幹細胞自我更新的功能,而在這之前並無文獻指出 SPARC 有促進間葉幹細胞自我更新的功能,本研究為發表此現象的首篇研究。
SPARC, also named Osteonectin, is a matricellular glycoprotein involving in the regulations of cell proliferation, migration, differentiation, embryogenesis, angiogenesis and bone formation. Mesenchymal stem cells ( MSCs ) are currently exploited in numerous clinical trials to investigate their potential in immune regulation, hematopoiesis and tissue regeneration. Currently applied doses are in 2–15 millions cell/kg body weight range, thus a fast and reliable ex-vivo expansion method is needed to meet the highly demanding cell dose.
Occasionally, we found that the recombinant SPARC ( rSPARC ) expressed by E .coli can promote the proliferation of human adipose-derived stem cell ( ADSC ) in 10% FBS culture condition. The cell variability of 10 μg/mL-rSPARC-treated ADSC has been elevated up to 180% compared to control group for 7 days-culture. The cell variability of dental pulp stem cell ( DPSC ) and umbilical cord mesenchymal stem cell ( UCMSC ) also have been significantly promoted by rSPARC treatment in serum free culture condition but not obversely in the 10% FBS culture condition. The promotive effect of rSPARC on the proliferation of those MSCs is decreased by the increasing cell passage number.
rSPARC, has no stimulation effect on adipogenesis and osteogenesis to ADSC, DPSC and UCMSC, has been proved in the follow experiments. After pre-treatments of rSPARC for 14 days, ADSC and DPSC both still maintain the muti-potency of adipogenesis and osteogenesis.
rSPARC has promotive effect on the proliferation of MSC and is not a stimulator for differentiation. rSPARC-treated MSCs still maintain the muti-potency of adipogenesis and osteogenesis. Thus, rSPARC promote Self-renewal of ADSC, DPSC and UCMSC. This is the first research to reveal the promotive effect of SPARC on the self-renewal of mesenchymal stem cells.
1.Chen, X.-D., Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Res C Embryo Today, 2010. 90(1): p. 45-54.
2.Dahlke, M.H., et al., Toward MSC in solid organ transplantation: 2008 position paper of the MISOT study group. Transplantation, 2009. 88(5): p. 614-9.
3.Kolf, C.M., E. Cho, and R.S. Tuan, Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 2007. 9(1): p. 204.
4.Ko, C.-S., et al., Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 2009. 107(2): p. 177-82.
5.Yow, S.Z., et al., Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells. Biomaterials, 2009. 30(6): p. 1133-42.
6.Yoneno, K., et al., Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures. Journal of biomedical materials research Part A, 2005. 75(3): p. 733-41.
7.Bradshaw, A.D. and E.H. Sage, SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest, 2001. 107(9): p. 1049-54.
8.Delany, A.M. and K.D. Hankenson, Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. Journal of cell communication and signaling, 2009. 3(3-4): p. 227-38.
9.Nakashima, M. and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod, 2005. 31(10): p. 711-8.
10.Kee, K., R.A.R. Pera, and P.J. Turek, Testicular germline stem cells. Nature Reviews Urology, 2010. 7(2): p. 94-100.
11.Godara, P., R. Nordon, and C. McFarland, Mesenchymal stem cells in tissue engineering. Journal of Chemical Technology & Biotechnology, 2008. 83(4): p. 397-407.
12.Friedenstein, A.J., R.K. Chailakhjan, and K.S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 1970. 3(4): p. 393-403.
13.Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
14.Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem cells, 2007. 25(11): p. 2896-902.
15.Koyama, N., et al., Evaluation of pluripotency in human dental pulp cells. Journal of Oral and Maxillofacial Surgery, 2009. 67(3): p. 501-506.
16.Schäffler, A. and C. Büchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem cells, 2007. 25(4): p. 818-27.
17.Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
18.Molchanova, E.A., O.V. Paiushina, and V.I. Starostin, Effects of growth factors on multipotent bone marrow mesenchymal stromal cells. Izv Akad Nauk Ser Biol, 2008(6): p. 645-62.
19.Kadivar, M., et al., Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells. Iranian Biomedical Journal, 2006. 10(4): p. 175-184.
20.Perry, B.C., et al., Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue engineering Part C, Methods, 2008. 14(2): p. 149-56.
21.Aust, L., et al., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
22.Haylock, D.N. and S.K. Nilsson, Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle, 2005. 4(10): p. 1353-5.
23.Bornstein, P. and E.H. Sage, Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol, 2002. 14(5): p. 608-16.
24.Rhee, D.J., et al., Matricellular proteins in the trabecular meshwork. Experimental Eye Research, 2009. 88(4): p. 694-703.
25.Motamed, K., SPARC (osteonectin/BM-40). Int J Biochem Cell Biol, 1999. 31(12): p. 1363-6.
26.Sage, H., et al., SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. The Journal of Cell Biology, 1989. 109(1): p. 341-56.
27.Termine, J.D., et al., Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 1981. 26(1 Pt 1): p. 99-105.
28.McVey, J.H., et al., Characterization of the mouse SPARC/osteonectin gene. Intron/exon organization and an unusual promoter region. J Biol Chem, 1988. 263(23): p. 11111-6.
29.Brekken, R.A. and E.H. Sage, SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol, 2001. 19(8): p. 816-27.
30.Yan, Q. and E.H. Sage, SPARC, a matricellular glycoprotein with important biological functions. J Histochem Cytochem, 1999. 47(12): p. 1495-506.
31.Funk, S.E. and E.H. Sage, Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts. J Cell Physiol, 1993. 154(1): p. 53-63.
32.Sage, E.H., et al., Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem, 2003. 278(39): p. 37849-57.
33.Termine, J.D., et al., Osteonectin, bone proteoglycan, and phosphophoryn defects in a form of bovine osteogenesis imperfecta. Proc Natl Acad Sci USA, 1984. 81(7): p. 2213-7.
34.Kelm, R.J., et al., Osteonectin in matrix remodeling. A plasminogen-osteonectin-collagen complex. J Biol Chem, 1994. 269(48): p. 30147-53.
35.Arnold, S.A. and R.A. Brekken, SPARC: a matricellular regulator of tumorigenesis. Journal of cell communication and signaling, 2009. 3(3-4): p. 255-73.
36.Podhajcer, O.L., et al., The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev, 2008. 27(4): p. 691-705.
37.Bradshaw, A.D., et al., Primary mesenchymal cells isolated from SPARC-null mice exhibit altered morphology and rates of proliferation. Molecular Biology of the Cell, 1999. 10(5): p. 1569-79.
38.Delany, A.M., et al., Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology, 2003. 144(6): p. 2588-96.
39.Caetano-Lopes, J., H. Canhao, and J. Fonseca, Osteoblasts and bone formation. Acta reumatológica portuguesa. 32(2): p. 103-110.
40.Fu, H., et al., Osteoblast differentiation in vitro and in vivo promoted by Osterix. Journal of biomedical materials research Part A, 2007. 83(3): p. 770-8.
41.Zhang, C., et al., Inhibition of Wnt signaling by the osteoblast-specific transcription factor Osterix. Proc Natl Acad Sci USA, 2008. 105(19): p. 6936-41.
42.Nie, J. and E.H. Sage, SPARC Inhibits Adipogenesis by Its Enhancement of {beta}-Catenin Signaling. J Biol Chem, 2009. 284(2): p. 1279-90.
43.Cheng, L., et al., SPARC support the expansion of cord blood stem cells in vitro. Cell Research 2008. 18: p. S19.
44.Lorenzo, J., M. Horowitz, and Y. Choi, Osteoimmunology: interactions of the bone and immune system. Endocrine Reviews, 2008. 29(4): p. 403-40.
45.Bassuk, J.A., et al., Expression of biologically active human SPARC in Escherichia coli. Archives of Biochemistry and Biophysics, 1996. 325(1): p. 8-19.
46.Wise, L.S. and H. Green, Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem, 1979. 254(2): p. 273-5.
47.Sabokbar, A., et al., A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Miner, 1994. 27(1): p. 57-67.
48.Bassuk, J.A., et al., Renaturation of SPARC expressed in Escherichia coli requires isomerization of disulfide bonds for recovery of biological activity. Int J Biochem Cell Biol, 1996. 28(9): p. 1031-43.
49.Schneider, E.L., et al., Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nature Biotechnology, 1997. 15(6): p. 581-5.
50.Zhu, Y., et al., Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct, 2008. 26(6): p. 664-75.
51.Shi, Y.-Y., et al., The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg, 2005. 116(6): p. 1686-96.
52.Bradshaw, A.D., The role of SPARC in extracellular matrix assembly. Journal of cell communication and signaling, 2009. 3(3-4): p. 239-46.
53.Wagner, W. and A.D. Ho, Mesenchymal stem cell preparations--comparing apples and oranges. Stem Cell Rev, 2007. 3(4): p. 239-48.
54.Nie, J., et al., IFATS collection: Combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem cells, 2008. 26(10): p. 2735-45.
55.Devine, S.M., Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl, 2002. 38: p. 73-9.
56.Barker, T.H., et al., SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem, 2005. 280(43): p. 36483-93.
57.Weaver, M.S., G. Workman, and E.H. Sage, The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem, 2008. 283(33): p. 22826-37.
58.Shi, Q., et al., Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem, 2004. 279(50): p. 52200-9.
59.Shi, Q., et al., Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 2007. 26(28): p. 4084-94.
60.Thomas, S.L., et al., PTEN augments SPARC suppression of proliferation and inhibits SPARC-induced migration by suppressing SHC-RAF-ERK and AKT signaling. Neuro-oncology, 2010. 12(9): p. 941-955.
61.Gottschling, S., et al., Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism. Stem cells, 2007. 25(3): p. 798-806.
校內:2020-12-31公開