簡易檢索 / 詳目顯示

研究生: 李昱慶
Li, Yu-Ching
論文名稱: 結合撓性結構與橡膠軸承之單軸粗細定位平台之設計、分析與解耦合控制
Analysis, Design, and Decoupling Control of a Single-Axis Coarse Fine Stage Using Compliant Mechanisms and Rubber Bearings
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 236
中文關鍵詞: 粗細定位平台撓性結構橡膠軸承雙致動系統解耦合控制
外文關鍵詞: Coarse-Fine stage, Compliant Mechanisms, Rubber Bearings, Decoupling Control
相關次數: 點閱:226下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在精密定位領域中,高頻寬、高衝程和高精度的單軸粗細定位平台常被提出並使用在不管是精密量測領域的原子力顯微鏡、自動對焦系統和IC產業中的光刻機,雖然單軸粗細定位平台相較於一般的精密定位平台性能較好,但仍有許多問題待解決,例如雙層平台同時作動與雙自由度互相干擾產生的耦合效應。所以為了研究粗細定位造成的耦合效應,本論文採用結構較小的橡膠軸承平台與乘載能力較好的金屬撓性結構平台,發展出一結合撓性結構與橡膠軸承的單軸粗細定位平台,上層平台為橡膠軸承定位平台,以四組橡膠軸承設計成一新型精密定位平台,採用可調整壓縮量的方式快速調整平台動態特性,下層平台為撓性結構定位平台,設計對稱性且乘載能力較好的割痕式撓性鉸練定位平台,兩平台皆以實驗進行系統參數辨別成功地建立平台數學模型。使用兩種控制器設計方法並以此數學模型設計控制器與模擬調整控制器參數。控制實驗方面,上層平台以Z-N設計法和L.T.設計法分別可以達到定位精度182nm、14nm,頻寬分別為15Hz和52Hz。下層平台方面,Z-N設計法和L.T.設計法定位精度分別為46nm和23nm,頻寬分別可以達到50Hz和120Hz。在單軸粗細定位平台方面,以掃頻測試的方式建立粗細平台的數學模型。在步階響應控制實驗中,下層致動造成的上層耦合振幅從未控制前的3μm以上被抑制到平均2μm以下,而上層致動造成的下層耦合振幅則從佔致動軸位移的20%抑制到1%,在弦波軌跡追蹤控制實驗中,雙軸控制時耦合軸的振幅在耦合軸控制器頻寬內有被有效抑制,並以解耦合控制器優化策略使上層致動造成耦合的抑制效果更好。本研究設計並實現了一單軸粗細精密定位平台,建立數學模型和以此模型設計的控制器分別進行控制定位,在單軸粗細定位平台方面也研究了雙層平台會造成的耦合效應,並且以控制器去抑制耦合的發生。

    In precision positioning applications, high-bandwidth, high-stroke, and high-accuracy single-axis coarse fine positioning stages are often proposed and used in precision metrology and manufacturing applications, such as atomic force microscopy, optical focusing system, and lithography of IC industry. In comparison to single stage, coarse fine positioning stages offers potentially larger dynamics range and compatible accuracy. However, due to the coupling effect caused by the interaction between these two stages such as inertia force generated during motion, the dynamic performances are usually limited. As a result, it is desired to study the interaction between them and develop effective active control schemes to eliminating the coupling for improving the dynamic performance. In this dissertation, a single axis dual stage is designed and realized to serve as the platform for addressing the concern addressed above. This novel stage integrated a rubber bearing positioning stage as the upper and a compliant metallic positioning stage as the bottom components. The rubber bearing stage, driven by a voice coil motor, utilizes four sets of rubber pads for providing stiffness and stiffness adjustment using preloads. On the other hand, the notch-based bottom stage, in conjunction with a piezoelectric actuator, could effectively provide better loading capacity and stiffness stability. Through mechanics modeling and dynamic testing, the transfer functions of stage dynamics are established. PID controller design based on both Ziegler-Nichols (Z-N) tuning and loop transmission shaping (L.T.) methods are implemented and simulated by Matlab/SIMULINK before experiments. The steady state resolution and bandwidths of the upper stage achieved are 182 nm and 15 Hz with Z-N and 14 nm and 52 Hz with L.T design methods, respectively. On the other hand, the achieved resolutions and bandwidths are 46nm and 50Hz for Z-N and 23 nm and 120 Hz for L.T. deign methods. Meanwhile, the error motion of one stage induced by the other stage due to coupling is also studied. Through step response, it is discovered that the motion of bottom stage induced by upper stage can be effectively suppressed by control while the reciprocal combination is less effective. On the other hand, in the sinusoid tracking control experiment, the coupling amplitudes are effectively suppressed within the control bandwidth in both cases. The suppression of coupling effect is further improved after optimizing the controller design by considering the coupling dynamics and positioning-axis error. In summary, the control schemes are successfully developed for controlling the motion and eliminating the coupling of a self-designed single-axis dual positioning stage. The controller design methodology and the proposed varying-stiffness rubber bearing stage design should be very useful for effectively enhancing the dynamic performance of future motion stage design applied in precision metrology and manufacturing.

    摘要 I Abstract II Extend Abstract III 致謝 XIX 目錄 XXI 表目錄 XXVII 圖目錄 XXIX 符號說明 XXXVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 7 1.3 本實驗室振動控制相關研究 9 1.4 研究方法 11 1.5 全文架構 13 第二章 研究背景介紹 15 2.1 本章介紹 15 2.2 精密定位平台應用 16 2.2.1 單軸粗細精密定位平台 16 2.2.2 金屬撓性結構精密定位平台 22 2.2.3 新型橡膠軸承精密定位平台 25 2.3 定位平台相關力學分析與設計 27 2.3.1 撓性結構作動機制與參數設計分析 27 2.3.2 橡膠軸承材料與力學分析理論 29 2.4 硬體介紹與相關應用 33 2.4.1 DS1104 R&D 控制板 33 2.4.2 壓電致動器 35 2.4.3 音圈馬達 36 2.4.4 電容式位移感測器 37 2.5 控制法則與相關應用 38 2.6 本章結論 39 第三章 精密定位平台之設計與分析 40 3.1 本章介紹 40 3.2 定義設計目標 41 3.3 定位平台概念性設計 43 3.3.1 平台機械設計 43 3.3.2 感測器選用設計 43 3.3.3 致動器選用設計 44 3.3.4 單軸粗細定位平台系統設計 45 3.4 上層平台設計與分析 46 3.4.1 平台設計概念 46 3.4.2 橡膠平台靜態分析 48 3.4.3 橡膠平台動態分析 50 3.4.4 橡膠軸承平台規格設計 54 3.5 下層平台之設計與分析 55 3.5.1 平台設計概念 55 3.5.2 撓性結構平台靜態分析 56 3.5.3 撓性結構平台動態分析 57 3.5.4 撓性結構平台規格設計 58 3.6 單軸粗細平台之分析 59 3.7 本章結論 63 第四章 系統實現與靜動態測試建模 64 4.1 本章介紹 64 4.2 實驗系統設計與實現 65 4.2.1 實驗系統設計與架設 66 4.2.2 實驗設備介紹 68 4.3 致動器系統動態測試與建模 71 4.4 上層平台測試與建模 74 4.4.1 不同壓縮量之靜態測試 74 4.4.2 不同壓縮量之動態測試 76 4.4.3 應力鬆弛測試 77 4.4.4 系統參數量測 79 4.4.5 上層平台系統模型建立 82 4.5 下層平台測試與建模 85 4.5.1 系統剛性測試 85 4.5.2 平台參數量測 87 4.5.3 不同載重之動態測試 89 4.5.4 下層平台系統模型建立 91 4.6 本章結論 93 第五章 平台之控制器設計與模擬 94 5.1 本章介紹 94 5.2 控制器設計方法 95 5.2.1 PID控制器之Zeigler-Nichols參數調整法 95 5.2.2 Loop transmission shaping設計法 98 5.3 控制器設計與參數調整流程 103 5.4 上層平台控制器設計與模擬 106 5.4.1 Zeigler-Nichols設計法 106 5.4.2 Zeigler-Nichols設計法之模擬結果 108 5.4.3 Loop transmission設計法與模擬結果 110 5.5 下層平台控制器設計與模擬 116 5.5.1 Zeigler-Nichols設計法 116 5.5.2 Zeigler-Nichols設計法之模擬結果 118 5.5.3 Loop transmission設計法與模擬結果 120 5.6 控制器參數選定 129 5.6.1 上層平台控制器參數選定 129 5.6.2 下層平台控制器參數選定 130 5.7 本章結論 132 第六章 上層平台控制實驗 133 6.1 本章介紹 133 6.2 控制實驗建置 134 6.3 步階響應實驗 135 6.3.1 Z-N設計法 135 6.3.2 Loop Transmission Design控制實驗 139 6.3.3 小結 141 6.4 弦波軌跡追蹤實驗 143 6.5 本章結論 148 第七章 下層平台控制實驗 149 7.1 本章介紹 149 7.2 控制實驗建置 150 7.3 步階響應實驗 151 7.3.1 Z-N設計法 151 7.3.2 Loop Transmission Design 155 7.3.3 小結 158 7.4 弦波軌跡追蹤實驗 160 7.5 本章結論 165 第八章 單軸粗細定位平台之測試與控制實驗 166 8.1 本章介紹 166 8.2 單軸粗細定位平台實驗建置 167 8.2.1 單軸粗細定位平台機械結構架構 167 8.2.2 單軸粗細定位平台系統訊號架構 170 8.3 步階耦合測試 172 8.3.1 下層平台步階耦合測試 172 8.3.2 上層平台步階耦合測試 177 8.3.3 開路步階之耦合振幅討論 181 8.4 弦波耦合測試 182 8.4.1 下層平台弦波耦合測試 182 8.4.2 上層平台弦波耦合測試 184 8.4.3 靈敏度分析 187 8.5 單軸粗細定位平台模型驗證 188 8.6 步階響應控制實驗 190 8.6.1 步階響應之平台單軸定位 191 8.6.2 步階響應之平台同動定位 197 8.6.3 步階控制實驗小結 199 8.7 弦波軌跡追蹤實驗 200 8.7.1 弦波軌跡追中之平台單軸定位 200 8.7.2 弦波軌跡追蹤之平台同動定位 205 8.8 解耦合控制策略優化 206 8.9 本章結論 210 第九章 研究結果與討論 211 9.1 全文歸納 211 9.2 討論 214 9.2.1 橡膠軸承定位平台設計 214 9.2.2 控制器設計方法 214 9.2.3 定位平台與控制器設計關係 215 9.2.4 定位性能比較 217 9.2.5 耦合效應與抑制 218 9.3 未來展望與未來工作 220 9.4 本章結論 223 第十章 結論與未來展望 224 10.1 本文結論 224 10.2 本文貢獻 226 10.3 未來工作 227 參考文獻 229 附錄 233

    [1] SSB245/10 Projection Lithography
    http://www.scientech.com.tw/EN/product/lcd/smee/ssb245.asp
    [2] 常州泰勒儀器有限公司
    http://www.cztlyq.com/
    [3] S. Akira, “Development of nano-meter motion control in Japan,” Journal of the Brazilian Society of Mechanical Sciences, vol.24, no. 4, pp.312-317, November, 2002.
    [4] Actuator Arm - Dolphin Data Lab
    http://www.dolphindatalab.com/data-recovery-glossary/actuator-arm/
    [5] K. H. Kim, Y. M. Choi, D. G. Gweon, D. P. Hong, K. S. Kim, S. W. Lee and M. G. Lee, “Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 60401C-60401C, 2005.
    [6] AFM-原子力顯微鏡(奈米壓痕)奈米科技應用介紹
    http://web1.knvs.tp.edu.tw/AFM/ch11.htm
    [7] Y. M. Choi and D. G. Gweon, “A high precision dual servo stage using halbach linear active magnetic bearings,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, October, 2011.
    [8] A. T. Elfizy, G. M. Bone and M. A. Elbestawi, “Design and control of a dual-stage feed drive,” International Journal of Machine Tools & Manufacture, vol.45, pp. 153-165, 2005.
    [9] Y. J. Liu, T. Li and L. N. Sun, “Design of a control system for a macro-micro dual-drive high acceleration high precision positioning stage for IC packaging,” Science in China Series E: Technological Sciences, vol.52, no.7, pp.1858-1865, 2009.
    [10] T. Fujita, A. Matsubara, D. Kono and I. Yamaji, “Dynamic characteristics and dual control of a ball screw drive with integrated piezoelectric actuator,” Precision engineering, vol.34, no.1, pp.34-42, 2010.
    [11] R.F. Fung and W.C. Lin, “System identification of a novel 6-DOF precision positioning table,” Sensors and Actuators A: Physical, vol.150, no.2, pp.286-295, 2009.
    [12] W. C. Wang, J. W. Lee, K. S. Chen, and Y. H. Liu, “Design and vibration control of a notch-based compliant stage for display panel inspection applications,” Journal of Sound and Vibration, vol.333, no.10, pp.2701–2718, 2014.
    [13] J. W. Lee, Y. C. Li, K. S. Chen and Y. H. Liu, “Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage,” Precision Engineering, vol.45, pp.374-386, 2016.
    [14] 鄧諺舉, 新型橡膠軸承一維定位平台之分析、設計、控制, 成功大學機械工程學系學位論文, 2015.
    [15] K. S. Chen, D. Trumper, and S. Smith, “Design and control for an electromagnetically driven X–Y–θ stage,” Precision Engineering, vol. 26, pp. 355-369, 2002.
    [16] 林洺安, 直接加速度回授與加速度積分回授於堆疊式雙軸撓性定位平台上之振動控制, 國立成功大學機械工程學系學位論文, 2016.
    [17] 林佩君, 雙軸式材料測試系統之設計與實驗及其在橡膠軸承之應用, 國立成功大學機械工程學系學位論文, 2014.
    [18] 鄭晏峰, 新式雙軸材料測試系統之實現與橡膠壓縮、剪力、疲勞測試, 國立成功大學機械工程學系學位論文, 2016.
    [19] 游逸萱, 結合3D列印與剪力阻尼於撓性定位平台之設計與控制, 國立成功大學機械工程學系學位論文, 2016.
    [20] 陳昱丞, 新型三軸橡膠軸承定位平台之分析、設計與控制, 國立成功大學機械工程學系學位論文, 2017.
    [21] Y. Li, F. Marcassa, R. Horowitz, R. Oboe and R. Evans, “Track-following control with active vibration damping of a PZT-actuated suspension dual-stage servo system,” Journal of dynamic systems, measurement, and control, vol.128, no.3, pp.568-576, 2006.
    [22] T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi and A. Sebastian, "Dual-stage nanopositioning for high-speed scanning probe microscopy," IEEE/ASME Transactions on Mechatronics, vol.19, no.3, pp.1035-1045, 2014.
    [23] K. Kawashima, T. Arai, K. Tadano, T. Fujita and T. Kagawa, “Development of coarse/fine dual stage using pneumatically driven bellows actuator and cylinder with air bearings,” Precision Engineering, vol.34, no.3, pp.526-533, 2010.
    [24] Q. Xu, “Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior,” IEEE Transactions on Automation Science and Engineering, vol.9, no.3, pp.554-563, 2012.
    [25] S. L. Chen, H. L. Liu and S. C. Ting, “Contouring control of biaxial systems based on polar coordinates,” IEEE/ASME transactions on mechatronics, vol.7, no.3, pp.329-345, 2002.
    [26] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 604-612, August 2003.
    [27] A. Balasubramanian, M. B. G. Jun, R. E. Devor, S. G. Kapoor, “A submicron multiaxis positioning stage for micro and nanoscale manufacturing processes,” ASME J. of Manufacturing Science and Engineering, vol.130, pp.1-8, June 2008.
    [28] Lead rubber bearing
    https://structurae.net/products-services/lasto-lrb-lead-rubber-bearing
    [29] E. I. Rivin, Stiffness and damping in mechanical design, Marcel Dekker, 1999.
    [30] A. E. Barton Martinelli, Rubber bearings for precision positioning systems, Master’s thesis, Massachusetts Institute of Technology, 2005.
    [31] D. P. Cuff, Electromagnetic Nanopositioner, Master’s thesis, Massachusetts Institute of Technology, 2006.
    [32] J.W. Ryu, D.G. Gweon, and K.S.Moon, “Optimal design of a flexure hinge based XYθ wafer stage,” Precision Engineering, vol. 21, no. 1, pp. 18-28, July 1997.
    [33] L. L. Howell, Compliant Mechanisms. Wiley Publication, 2001.
    [34] K.B. Choi, J.J. Lee, S. Hata, “A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel,” Sensors and Actuators A: Physical, vol.161, no.1, pp.173-181, 2010.
    [35] G. Xu and L. Qu, “Some analytical problems of high performance flexure hinge and micro-motion stage design,” Proceedings of The IEEE International Conference on Industrial Technology, pp.771-775, 1996.
    [36] I. Her and J. C. Chang, “Linear scheme for the displacement analysis of micropositioning stages with flexure hinges,” ASME Journal of Mechanical Design, Vol. 116, pp.770-776, 1994.
    [37] A.N. Gent, Engineering with rubber: how to design rubber components, Hanser Publication, Munich, Germany, 2001.
    [38] R. M. Christensen, Theory of viscoelasticity:an introduction, Academic Press, 1982.
    [39] P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates,” Journal of Strain Analysis, vol. 14, pp. 11-16, 1979.
    [40] P. B. Lindley, Engineering design with natural rubber, The Malaysian Rubber’s Research Association, 1970.
    [41] A. N. Gent and P. B. Lindley, “The compression of bonded rubber blocks,” Proceedings of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 111-122, June 1959.
    [42] 呂毓笙, 加速度回授於撓性結構之振動控制, 國立成功大學機械工程學系學位論文, 2014.
    [43] T. J. Lewis, “The piezoelectric effect,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 717-720, 2005.
    [44] Precision Medical Motors and Actuators
    http://www.azooptics.com/Article.aspx?ArticleID=316
    [45] Voice Coil Actuators
    http://ariwatch.com/VS/VoiceCoils/
    [46] 電容感測器原理
    http://elecndos.com/article/003/3466
    [47] Semiconductor Wafer Non-Contact Thickness Measurement
    http://www.azom.com/article.aspx?ArticleID=10566
    [48] S. T. Smith and D. G. Chetwynd, Foundations of Ultraprecision Mechanism Design, Gordon and Breach Science Publishers, USA, 1994.
    [49] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol.64, pp.759–768, 1942.

    下載圖示 校內:2020-08-01公開
    校外:2020-08-01公開
    QR CODE