簡易檢索 / 詳目顯示

研究生: 黃稚桓
Huang, Chih-Huan
論文名稱: 具雙重模式光學三維量測系統之建構
Development of a Dual-Mode 3D Optical Measurement System
指導教授: 蔡明俊
Tsai, Ming-June
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 攝影機校正運動追蹤器人體掃描機
外文關鍵詞: Human scanner, Motion tracker, Camera calibration
相關次數: 點閱:227下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目標為建構一套具有雙重模式之光學三維定位系統(D2000),將光學式三維掃描與標誌點運動追蹤功能整合於同一硬體架構中。利用其掃描功能,可建立完整人體靜態資料並依標準格式記錄人體結構化之檔案;再利用其運動追蹤功能擷取受測者之標誌點運動,並結合靜態掃描之結構化檔案來建立具真實人體模型,以降低人體靜態與動態資料接續上的難度。本文內容包含系統模組之光學設計、電路實作、組裝、攝影機校正及多模組系統註冊。攝影機校正引入兩種方法,第一種為使用已知三維校正治具計算攝影機參數,並透過最佳化方法精進校正誤差;另一種方法則為利用平面校正治具來求得攝影機參數。最後透過實驗評估靜態掃描與動態追蹤之效能。

    The purpose of this study is focused on the development of a dual-mode optical measurement system. In order to decrease the degree of difficulty in integration of static and dynamic data, we combine human motion tracker with human body scanner in one system. It could not only record complete human data and establish a standard human file by scanner but also track the motion of markers on the human body by this dual-mode optical measurement system. The content includes optical design, circuit design, camera calibration and multi-module registration. Two camera calibration methods are introduced in this study. The first method uses a known-shape 3D-jig to compute the camera parameters and employs optimization to improve the accuracy. The second method uses a planar jig to obtain camera parameters by arbitrary orientations. Finally, we evaluate the performance of scanner and tracker by experiments.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 X 第一章 序論 1 1-1 研究動機及目的 1 1-2 文獻回顧 4 1-3 論文綱要 6 第二章 系統架構 8 2-1 光學設計 8 2-2 硬體架構 13 2-2-1 影像擷取卡 14 2-2-2 三維量測模組 15 2-2-3 I/O控制箱 18 2-3 系統架設 20 第三章 攝影機模型 22 3-1 攝影機模型 22 3-2 雙攝影機深度計算模式 28 第四章 攝影機校正 35 4-1 鏡頭扭曲校正 37 4-2 三維校正方法 43 4-2-1 攝影機校正參數推導 43 4-2-2 校正治具設計 46 4-2-3 校正參數最佳化 50 4-3 二維校正方法 58 4-3-1 攝影機校正參數推導 59 4-3-2 校正版設計 62 4-3-3 校正方法實現及誤差分析 63 第五章 多模組座標之轉換 75 5-1 註冊方法 75 5-2 註冊治具設計 81 5-3 註冊誤差評估 82 第六章 實驗與系統效能評估 85 6-1 靜態掃描 85 6-1-1 結構光編碼 85 6-1-2 靜態掃描實驗 90 6-2 動態追蹤 99 6-2-1 標誌點搜尋與匹配 99 6-2-2 動態追蹤實驗 102 第七章 結論與建議 109 7-1 研究成果 109 7-2 討論及建議 111 參考文獻 113 自述 118

    1. Cyberware. Whole Body Color 3D Scanner (Model WBX). 2008 [cited; Available from: http://www.cyberware.com/.
    2. Hamamatsu. Bodyline Scanner 2008 [cited; Available from: http://jp.hamamatsu.com/en/index.html.
    3. Vitronic. VITUSsmartXXL. 2008 [cited; Available from: http://www.vitronic.de/en/.
    4. 林長慶,人體掃瞄機之研發與其點資料處理之研究,機械工程學系。 2003,國立成功大學:台南。
    5. Hung, C.C., Development of an Optical Three Dimensional Measurement System and Its Performance Evaluation, in Mechanical Engineering. 2005, National Cheng Kung University: Tainan.
    6. 呂宗翰,頭部立體攝像機之研發與數位頭形之重建,機械工程學系。 2006,國立成功大學:台南。
    7. Gühring, J., Dense 3-D Surface acquisition by Structured Light Using off-the-shelf Components. 2000: Report of University of Stuttgart, Germany.
    8. Gühring, J., C.B., Böhm, J. and Fritsch, D. Data Processing and Calibration of a Cross-Pattern Stripe Projector, in International Archives of Photogrammetry and Remote Sensing 33. 2000: Amsterdam. p. 327-338.
    9. Koninckx, T.P., Griesser, A., and Van Gool, L. Real-time range scanning of deformable surfaces by adaptively coded structured light. in 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on. 2003. p. 293-300.
    10. Pages, J., Salvi, J., Garcia, R., and Matabosch, C. Overview of coded light projection techniques for automatic 3D profiling. in Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on. 2003. p. 133-138 vol.1.
    11. Sadlo, F., Weyrich, T., Peikert, R., and Gross, M. A practical structured light acquisition system for point-based geometry and texture. in Point-Based Graphics, 2005. Eurographics/IEEE VGTC Symposium Proceedings. 2005. p. 89-145.
    12. Griesser, A., Koninckx, T.P., and Van Gool, L. Adaptive real-time 3D acquisition and contour tracking within a multiple structured light system. in Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on. 2004. p. 361-370.
    13. Lanman, D., Crispell, D., and Taubin, G. Surround Structured Lighting for Full Object Scanning. in 3-D Digital Imaging and Modeling, 2007. 3DIM '07. Sixth International Conference on. 2007. p. 107-116.
    14. Herda, L., Fua, P., Plankers, R., Boulic, R., and Thalmann, D., Using skeleton-based tracking to increase the reliability of optical motion capture. Human Movement Science, 2001. 20(3): p. 313-341.
    15. Tanie, H., Yamane, K., and Nakamura, Y. High Marker Density Motion Capture by Retroreflective Mesh Suit. in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. 2005. p. 2884-2889.
    16. Kolahi, A., Hoviattalab, M., Rezaeian, T., Alizadeh, M., Bostan, M., and Mokhtarzadeh, H., Design of a marker-based human motion tracking system. Biomedical Signal Processing and Control, 2007. 2(1): p. 59-67.
    17. Maletsky, L.P., Sun, J., and Morton, N.A., Accuracy of an optical active-marker system to track the relative motion of rigid bodies. Journal of Biomechanics, 2007. 40(3): p. 682-685.
    18. Analysis, M. Raptor-4 Digital RealTime System. 2009 [cited; Available from: http://www.motionanalysis.com/index.html.
    19. GOM. PONTOS. 2008 [cited; Available from: http://www.gom.com/EN/index.html.
    20. Ukida, H., Kaji, S., Tanimoto, Y., and Yamamoto, H. Human Motion Capture System using Color Markers and Silhouette. in Instrumentation and Measurement Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE. 2006. p. 151-156.
    21. Zheng, J.-b., Zhou, B., Li, X.-x., and Yan, J.-y. Multi-markers 3D tracking algorithm in a video motion capture system. in Visual Information Engineering, 2008. VIE 2008. 5th International Conference on. 2008. p. 52-55.
    22. 蔡明俊、黃大可、呂宗翰、龍學勇、吳慶財,應用於齒科臨床訓練之光學追蹤系統之研發,中國機械工程學會第二十五屆全國學術研討會論文集。2008:彰化。
    23. SENTECH. STC-CL232A. 2008 [cited; Available from: http://www.sentechamerica.com/.
    24. Optimed, K. LMVZ4411 4.4-11mm 2008 [cited; Available from: http://www.kowa-usa.com/frontend/default.asp.
    25. Webster, R.W., and Wei, Y., “ARINE P.” – A Robot Golfing System Using Binocular Stereo Vision and a Heuristic Feedback Mechanism. Proceeding of the 1992 IEEE/RSJ International Conference on Intelligent Robots and System, 1992: p. 2027-2034.
    26. Tsai, R., A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. Robotics and Automation, IEEE Journal of, 1987. 3(4): p. 323-344.
    27. Zhang, Z., Determining the epipolar geometry and its uncertainty: A review. The International Journal of Computer Vision, 1998. 27(2): p. 161-195.
    28. Lu, R.S. and Li, Y.F., Calibration of a 3D vision system using pattern projection. Sensors and Actuators A: Physical, 2003. 104(1): p. 94-102.
    29. Cui, H., Dai, N., Yuan, T., Cheng, X., and Liao, W. Calibration Algorithm for Structured Light 3D Vision Measuring System. in Image and Signal Processing, 2008. CISP '08. Congress on. 2008. p. 324-328.
    30. Sturm, P.F. and Maybank, S.J. On plane-based camera calibration: A general algorithm, singularities, applications. in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. 1999. p. 437 Vol. 1.
    31. Zhengyou, Z. Flexible camera calibration by viewing a plane from unknown orientations. in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. 1999. p. 666-673 vol.1.
    32. Meng, X. and Hu, Z., A new easy camera calibration technique based on circular points. Pattern Recognition, 2003. 36(5): p. 1155-1164.
    33. Lucchese, L., Geometric calibration of digital cameras through multi-view rectification. Image and Vision Computing, 2005. 23(5): p. 517-539.
    34. Zhong, H., Mai, F., and Hung, Y.S. Camera Calibration Using Circle and Right Angles. in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on. 2006. p. 646-649.
    35. Vilaca, J.L., Fonseca, J.C., and Pinho, A.M., Calibration procedure for 3D measurement systems using two cameras and a laser line. Optics & Laser Technology, 2009. 41(2): p. 112-119.
    36. Zhengyou, Z., Camera calibration with one-dimensional objects. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004. 26(7): p. 892-899.
    37. Zijian, Z., Yuncai, L., and Zhengyou, Z., Camera Calibration With Three Noncollinear Points Under Special Motions. Image Processing, IEEE Transactions on, 2008. 17(12): p. 2393-2402.
    38. Sang De, M., A self-calibration technique for active vision systems. Robotics and Automation, IEEE Transactions on, 1996. 12(1): p. 114-120.
    39. Pollefeys, M., Koch, R., and Van Gool, L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. in Computer Vision, 1998. Sixth International Conference on. 1998. p. 90-95.
    40. Won Pil, Y., Young Jin, L., and Myung Jin, C. Self calibration of focal length and rotation parameters using cross ratio. in Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on. 1998. p. 1828-1833 vol.3.
    41. Qiang, J. and Songtao, D., Self-calibration of a rotating camera with a translational offset. Robotics and Automation, IEEE Transactions on, 2004. 20(1): p. 1-14.
    42. Xuedong, W., Daoying, P., and Xinhua, J. Linear Camera Self-Calibration with Varying Intrinsic Parameters Based on Projective Reconstruction. in Industrial Technology, 2006. ICIT 2006. IEEE International Conference on. 2006. p. 2525-2528.
    43. Heikkila, J. and Silven, O. A four-step camera calibration procedure with implicit image correction. in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. 1997. p. 1106-1112.
    44. Chen, X., Xi, J., Jin, Y., and Sun, J., Accurate calibration for a camera-projector measurement system based on structured light projection. Optics and Lasers in Engineering. 47(3-4): p. 310-319.
    45. Zhang, Z., A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000. 22(11): p. 1330-1334.
    46. Stein, G.P. Lens distortion calibration using point correspondences. in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. 1997. p. 602-608.
    47. Fletcher, R., A new approach to variable metric algorithms. The Computer Journal, 1970. 13(3): p. 317- 322.
    48. Hamamatsu, Infrared LED L1939 series. 2001.

    下載圖示
    2019-07-28公開
    QR CODE