簡易檢索 / 詳目顯示

研究生: 蔡衛霖
Tsai, Wwi-lin
論文名稱: 核廢料深層處置圍岩熱學-力學行為研究
Thermo-Mechanical Behaviors of Near Field Rocks on The Geological Disposal for Nuclear Waste
指導教授: 陳昭旭
Chen, Chao-hsu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 151
中文關鍵詞: 核廢料核廢料深層處置FLAC3D
外文關鍵詞: geological disposal, FLAC3D, spent nuclear fuel
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   核廢料為具有長半衰期之高放射性物質,對人類生活環境與生物圈具有威脅性,須採取與人類生活環境長期隔絕之方式加以處理。經過世界各核能使用先進國家之研究顯示,較穩定且安全之處置法為深層地質處置(Deep Geological Disposal)。
      本研究以核廢料深層處置為基本概念,並參考瑞典之相關研究,考慮膨潤土與回填材料所具備之熱性質及力學特性,藉由FLAC3D數值分析軟體分析深覆蓋最終處置場之周圍岩體,比較核廢料放置與未放置時因處置坑間距之變化使處置場周圍岩體,受核廢料罐所引起之溫度場與應力場影響後之發展行為。
      經研究並多方面分析後認為於台灣地區500m深之處置場中,後發現雙處置坑間距越小其溫度場間的影響、應力的作用、塑性區的範圍及位移量都有變大的趨勢。因此考慮最佳空間利用之最佳化配置來提供處置場之使用效率,以降低核廢料之處理成本;本研究認為於台灣地區500m深之處置場中,採用初始地溫為30~35℃之結晶岩層,處置坑之間距8公尺到10公尺,處置隧道之間距20公尺到25公尺較為適宜。而處置場址中塑性區域,多為其安全性與穩定性之參考依據,並於該發生區域須多採以補強之措施,以確保最終處置場址可持續其阻絕功能。

    Because of inherent radioactivity, the spent nuclear fuel would threaten our environment and the biosphere. We must take steps to permanently exclude the spent nuclear fuel away from our activity environment in order to avoid any possible danger. The method of deep geological disposal is regarded by the leading countries of the advanced technology in nuclear as the most stable and safe method.
    This research is based upon the idea of deep geological disposal proposed by the Swedish research groups. This thesis considered many factors, including the thermal and mechanical properties of the bentonite and backfill. By using the numerical analysis package, FLAC3D, this thesis attempted to analyze the distributions of the temperature and mechanical fields of the geological repository disturbed by waste canisters.
    Several scenarios are taken into account: a single storage hole of different initial temperatures, and two-storage-hole and two-tunnel of different distances. This thesis suggests that the appropriate distances between canisters are 6~8m and those from tunnel to tunnel are 25m under the conditions of initial temperature 26~28℃ and 500m in-situ in Taiwan crystalline bedrock. Through stress analysis, this study shows that the tensile regions are the most critical ones where should be reinforced to ensure the capability of isolation of the disposal site.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VIII 圖目錄 IX 符號說明 XXI 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 1.3 研究內容 3 第二章 文獻回顧 6 2.1 核廢料之處置概念 6 2.1.1 核廢料處置方式 8 2.1.2 放射性核廢料處置流程與原則 10 2.1.3 最終處置規劃 14 2.1.4 多重屏障 16 2.1.5 處置場之選址準則 20 2.2 岩石之熱應力分析 23 2.3 核廢料深層處置之相關研究 24 2.4 岩體之基本性質 29 2.5 受熱岩體之力學行為 35 第三章 理論模式 37 3.1 有限差分法(FDM)之數值熱傳輸分析理論 37 3.1.1 由微分方程式推導 39 3.1.2 由能量平衡推導 40 3.1.3 能量方程式微分推導 42 3.2 熱傳導理論 44 3.2.1 卡式直角座標系 46 3.2.2 圓柱直角座標系 47 3.2.3 球體座標系 47 3.3 FLAC3D熱傳模式理論 47 3.3.1 基本定義 48 3.3.2 能量平衡方程式 48 3.3.3 傳輸定律 50 3.3.4 初始條件與邊界 50 3.3.5 力學偶合:熱應變 51 第四章 數值分析方法 52 4.1 FLAC3D之概述 52 4.1.1 FLAC3D之基本方程式 52 4.1.2 FLAC3D之運算程序 55 4.1.3 FLAC3D熱傳模式特點 56 4.1.4 FLAC3D熱傳分析模式之數值方法 57 4.1.5 FLAC3D之基本分析架構 67 4.1.6 FLAC3D之實際分析步驟 68 第五章 核廢料罐處置坑之數值模擬分析 70 5.1 數值模擬之假設 70 5.1.1 模型之橫斷面與尺寸 70 5.1.2 邊界設定 73 5.1.3 初始條件設定 77 5.2 模擬案例形式 85 5.3 案例一:單隧道單孔處置坑分析結果 89 5.3.1溫度分佈 89 5.3.2 應力分佈 90 5.3.3 處置坑塑性分佈 95 5.3.4 單孔處置坑周圍岩體位移趨勢 96 5.4 案例二:單隧道雙處置坑分析結果 97 5.4.1 溫度分佈 97 5.4.2 應力分佈 103 5.4.3 處置坑塑性分佈 107 5.4.3 處置坑岩體位移方向 107 5.5 案例三:雙隧道兩處置坑分析結果 111 5.5.1 溫度分佈 111 5.5.2 應力分佈 115 5.5.3 處置坑塑性分佈 119 5.5.4 處置坑岩體位移方向 120 5.6 案例四:處置時間1.5年、5年、10年與30年 124 5.6.1 單隧道單孔處置坑分析結果 124 5.6.2 單隧道雙處置坑分析結果 128 5.6.3 雙隧道兩處置坑分析結果 136 第六章 結論與建議 141 6.1 結論 141 6.2 建議 144 參考文獻 145

    1. 王文盛、郭文振,熱傳遞學(上),乾泰出版社,1978。
    2. 王俊明,高溫下脆性岩石之力學與物理性質,國立交通大學碩士論文,1995。
    3. 林衍行,岩石隧道變形行為研究,國立台灣工業技術學院碩士論文,1991。
    4. 林宏明,石英砂岩與大理石的力學特性及組成律之研究,國立成功大學土木工程研究所碩士論文,1992。
    5. 洪錦雄、莊文壽、劉凌振、董家寶,我國用過核燃料長程處置潛在母岩特性調查與評估階段-前二年計畫,功能/安全評估研究-建立深層處置場初期功能評估技術(I),核能研究所,2001。
    6. 范振峰,用過核燃料地下處置場之熱應力與地下水影響分析,國立中興大學碩士論文,2006
    7. 高世鍊,開挖中隧道變形行為之初步研究,國立成功大學碩士論文,1998。
    8. 黃偉慶,放射性廢料處置場緩衝及回填材料物理性質研究,行政院原子能委員會,2000。
    9. 劉尚志、張璞、焦自強,高放射性廢料深層地質處置,原子能委員會核能彙刊,第24卷第5期,1988。
    10. 歐陽湘、戴國邦、董倫道等,我國用過核燃料長程處置計畫-第三階段區域調查前四年工作計畫-第二工作年度計畫-瑞典SKB(國外人員訓練)出國報告,核能研究所,1995。
    11. 潘國樑,應用環境地質學,地景出版社,1993。
    12. 賴成銑,洪浩源,我國用過核燃料長程處置潛在母岩特性調查與評估階段-發展初步功能/安全評估模式(第一年計畫)-地質圈評估技術,核能研究所,2002。
    13. 鄺寶山、王文禮 FLAC程式於隧道工程之實例分析,地工技術,第41期,pp. 50-61,1993。
    14. 鍾柏仁,核廢料深層處置進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文,2001。
    15. Aversa, S. and Evangelista, A., Thermal Expansion of Neapolitan Yellow Tuff. Rock Mech. & Rock Eng., Vol. 26, No. 4, pp.281-306, 1993.
    16. Bauer, S.J. and Johnson, B., Effects of Slow Uniform Heating on the Physical Properties of the Westerly and Charcoal Granites. Proc. 20th Symp. on Rock Mech., Austin, Texas, ASCE, pp.7-18, 1979.
    17. Becker, A.A., The Boundary Element Method in Engineering. Ph.D. Thesis, University of Nottingham, U.K., 1992.
    18. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses. Wiley, New York, 1960.
    19. Cleall, P.j. Mekhuish, T.A. Thomas, H.R., Modelling the Three-Dimensional Behaviour of a Protoype Nuclear Waste Repository, U.K., 2006
    20. Crank, J., The Mathematics of Diffusion: 2nd Edition, Oxford: Clarendon Press, 1975.
    21. Hakami, E. and Olofsson, O., Thermo-Mechanical Effects Around A Radioactive Waste Repository. FLAC and Numerical Modeling in Geomechanics, pp.311-316, 1999.
    22. Hanley, E.J., Dewitt, D.P. and Roy, R.F., The Thermal Diffusivity of Eight Well-Characterized Tocks for the Temperature Range 300-1000°K. Engineering Geology, Vol. 122, pp.31-47, 1978.
    23. Heuze, F.E., High Temperature Mechanical, Physical and Thermal Properties off Granitic Rock-A Review. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 1, pp.3-10, 1983.
    24. Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses Strength. Int. J. of Rock Mech. Sci. & Geomech. Abstr., Vol. 34, pp. 1165-1186, 1997.
    25. Hoek, E. and Brown, E.T., Empirical Strength Criterion for Rock Masses. J. of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035, 1980.
    26. Hoek, E. and Brown, E.T., Underground Excavations in Rock. IMM, London, 1980.
    27. Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3 Dimensions User's Manual. Minneapolis, Minnesota, U.S.A., 1994.
    28. Jumikis, A.R., Rock Mechanics. 2nd Edition, Trans. Tech. Pubns., Germany, 1983.
    29. Karlekar, B.V. and Desmond, R.M., Engineering Heat Transfer. St. Paul, West Pub. Co., 1977.
    30. KBS, Final Storage of Spent Nuclear Fuel—KBS-3. Swedish Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden, 1983.
    31. Mahtab, M.A. and Wiles, T., Immobilized Waste Vault: Room-and-Pillar Thermal Rock Mechanics Analyses. AECL TR-54, 1980.
    32. NAGRA, Project Gewahr 1985: NAGRA (Switzerland) NGB 85-09. 1985.
    33. Nowacki, W., Thermoelasticity. New York: Addison-Wesley, 1962.
    34. zisik, M.N., Heat Conduction. 2nd Edition, John Wiley & Sons Inc., N.Y., 1993.
    35. zisik, M.N., Finite Difference Method in Heat Transfer. CRC Press, Boca Raton, U.S.A., 1994.
    36. Priest, S.D. and Brown, E.T., Probabilistic Stability Analysis Variable Rock Slopes. Trans. Instn. Min. Metall., Vol. 92, No. A1-A2, 1983.
    37. Pusch, R. and Borgesson, L., PASS-Project on Alternative Systems Study. Performance Assessment of Bentonite Clay Barrier in Three Repository Concepts: VDH, KBS-3 and VLH, SKB, TR 92-40, Stockholm, Sweden, 1992.
    38. Site-94, Deep Repository Performance Assessment Project. Swedish, SKB Report 96:36, Vol. 1-2, 1996.
    39. SKB, Activities-1998: Svensk Karnbranslehantering AB. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1999.
    40. SKB, sp Hard Rock Laboratory-Annual Report 1998: TR 99-10. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1999.
    41. SKB, Final Repository for Radioactive Operational Waste-SFR. Swedish Nuclear Fuel and Waste Management Co., 1995.
    42. SKB, Plan 96-Cost for Management of the Radioactive Waste From Nuclear Power Produciton. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 1996.
    43. SKB, Stepwise Decision-Making and Options for Retrieval in the Swedish KBS-3 Concept to Be Presented at the International Seminar on Retrieval of HLW and Spent Nuclear Fuel. Saltsjbaden 24-27, Tnis Papp, 1999.
    44. Svemar, C. and Olsson, O., KBS-3 System Design — Then, Now and in the Future. SKB-sp Hard Rock Laboratory, Sweden, 1999.
    45. KAERI, The 2000 Joint Workshop on High-Level Radwaste Disposal Between Korea and Japan. Korea, 2000.
    46. Thunvik, R. and Braester, C., Heat Propagation from a Radioactive Waste Repository. SKB TR 91-61, Stockholm, 1991.
    47. Wai, R.S.C., Lo, K.Y. and Rowe, R.K., Thermal Stress Analysis in Tock with Nonlinear Properties. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp.211-220, 1982.
    48. Zienkiewicz, O.C. and Taylor, R.T., The Finite Element Mehtod. 4th Edition, McGraw-Hill, London, 1991.
    49. Clark, S.J., Handbook of Physical Constants. Geological Society of America, New York, 1966.
    50. Tiktinsky, D.H., Numerical Parametric Sensitivity Study of Thermal and Mechanics Properties for A High Level Nuclear Waste Repositroy. Proc. of the 29th U.S. Symp. on Rock Mech., pp.429-439, 1988.
    51. Tsui, K.K., Lee, C.F., Tsai, A. and Harris, N.L., Thermaomechanical Modelling of A Nuclear Waste Disposal Vault in Crystalline Hard Rock. Proc. of the 4th Int. Conference on Numerical Methods in Geomech., Balkema, 1982.
    52. Hokmark, H., Acceptance of Emplacement Hole Positions-Stage 1 Thermomechanical Study. Engineering Geology, Vol. 49, pp.215-222, 1998.

    下載圖示 校內:立即公開
    校外:2007-08-21公開
    QR CODE