簡易檢索 / 詳目顯示

研究生: 賴揚生
Lai, Yang-Sheng
論文名稱: 具長時間實驗量測數據之熱傳導問題的逆向分析
Inverse Analysis of Heat Conduction Problems with Experimental Data of Long Time Heat Treatment
指導教授: 李森墉
Li, Sen-Yong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 雷射表面加熱噴灑散熱逆向熱傳導問題時變性邊界
外文關鍵詞: laser surface heating, spray cooling, inverse heat conduction, time-dependent boundary conditions
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了一種解決長時間熱傳導問題的逆向分析方法,包含了雷射表面加熱問題及噴灑散熱問題。藉由最小均方誤差法將在物體內得到的實驗量測數據與經由時變性邊界的熱傳導問題之解析解得到的估算數據之誤差最小化,可以得到其未知邊界的溫度。我們可以求得所有位置與時間的溫度分佈和熱通量。此方法無需使用積分轉換及繁雜的數值運算,亦無需使用將時間區域分成數個微小時間區域的技巧。在數學和實驗上的範例更是說明了此方法為一個簡單、有效率及準確的方法。

    This paper proposes a solution method for inverse analysis of long time heat conduction problems, include of laser surface heating problem and spray cooling problem. By minimizing the mean square error between the experimental data obtained from inside the body and estimated data from the derived analytical solution of a heat conduction problem with time-dependent boundary conductions, the temperature at the unknown boundary can be determined. Consequently, the temperature distribution and the heat flux over the entire time and space domains can also be obtained. The integral transform and tedious numerical operations are not required in the proposed solution method. In addition, the technique of dividing time into serval sub-time intervals is not required in long time heating treatment analysis. Mathematical and experimental examples are given to illustrate the simplicity, efficiency, and accuracy of the proposed method.

    摘要 I Abstract II 誌謝 III Nomenclature XII Contents V Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Review 1 1.3 Research Motive and Method 4 1.4 Scope 5 Chapter 2 Inverse Analysis of Heat Treatment Problem 7 2.1 Mathematical Modeling 7 2.2 Analytic solution form 9 2.2.1 Change of variable 9 2.2.2 Shifting functions 10 2.2.3 Solution of transformed variable 12 2.3 Fourier transform the measured temperature function 13 2.4 Least square error 16 Chapter 3 Example and Verification 29 3.1 Mathematical example 29 3.2 Experimental example 39 3.2.1 Inverse Analysis of Laser Surface Heating Problem 39 3.2.2 Inverse Analysis of Spray Cooling on a Hot Surface Problem 42 Chapter 4 Conclusion 69 References 71 Appendix A: Analytical solution of general system over entire domain of laser surface heating problem. 74 Appendix B: Analytical solution of general system over entire domain of spray cooling on a hot surface problem by using sine series method. 77 Appendix C: Analytical solution of general system over entire domain of spray cooling on a hot surface problem by using cosine series method. 81

    [1] B. Jin, Y. Zheng, A Meshless Method for Some Inverse Problems Associated with The Helmholtz equation, Comput. Meth. Appl. Mech. Eng. 195 (2006) 2270-2288.
    [2] D. Lesnic, L. Elliott, The Decomposition Approach to Inverse Heat Conduction, J. Math. Anal. Appl. 232 (1999) 82-98.
    [3] H.T. Chen, X.Y. Wu, Estimation of Surface Absorptivity in Laser Surface Heating Process with Experimental Data, J . Phys. D: Appl. Phys. 39 (2006) 1141-1148.
    [4] H.T. Chen, H.C. Lee, Estimation of Spray Cooling Characteristics on a Hot Surface Using the Hybrid Inverse Scheme, Int. J. Heat Mass Transf. 50 (2007) 2503-2513.
    [5] H.T. Chen, SL. Sun, H.C. Huang, S.Y. Lee, Analytical Closed Solution for The Heat Conduction with Time Dependent Heat Convection Coefficient at One Boundary, CMSE 59 (2010) 107-126.
    [6] J.T. Wang, C.I. Weng, J.G. Chang, C.C. Huang, The Influence of Temperature and Surface Conditions on Surface Absorptivity in Laser Surface Treatment, J. Appl. Phys. 87 (2000) 3245-3253.
    [7] L. Yan, C.L. Fu, F.L. Yang, The Method of Fundamental Solutions for The Inverse Heat Source Problem, Eng. Anal. Bound. Elem. 32 (2008) 216-222.
    [8] M. Monde, Y. Mitsutake, A New Estimation Method of Thermal Diffusivity Using Analytical Inverse Solution For One-dimensional Heat Conduction, Int. J. Heat Mass Transf. 44 (2001) 3169-3177.
    [9] M. Monde, H. Arima, Y. Mitsutake, Estimation of Surface Temperature and Heat Flux Using Inverse Solution for One-Dimensional Heat Conduction, J. Heat Transf. 125 (2003) 213-223.
    [10] P.L. Woodfield, M. Monde, Y. Mitsutake, Improved Analytical Solution for Inverse Heat Conduction Problems on Thermally thick and semi-infinite solids, Int. J. Heat Mass Transf. 49 (2006) 2864-2876.
    [11] Q. Cui, S. Chandra, S. McCahan, The effect of Dissolving Salts in Water Sprays Used for Quenching a Hot Surface: Part 2 – Spray cooling, ASME J. Heat Transf. 125 (2003) 333-338.
    [12] S.Y. Lee, S.M. Lin, Dynamic Analysis of Nonuniform Beams with Time-dependent Elastic Boundary Conditions, J. Appl. Mech. 63 (1996) 474-478.
    [13] S.S. Hsieh, T.C. Fan, H.H. Tsai, Spray Cooling Characteristics of Water and R-134a. Part 2: Transient cooling, Int. J. Heat Mass Transf. 47 (2004) 5713-5724.
    [14] S.Y. Lee, S.M. Lin, C.S. Lee, S.Y. Lu, Y.T. Liu, Exact Large Deflection of Beams with Nonlinear boundary conditons, CMES 30 (2008) 17-26.
    [15] S.Y. Lee, T.W. Huang, A Method for Inverse Analysis of Laser Surface Heating with Experimental Data, Int. J. Heat Mass Transf. 72 (2014) 299-307.
    [16] S.Y. Lee, T.W. Huang, Inverse Analysis of Spray Cooling on a hot surface with Experimental Data, 國立成功大學機械工程學系博士論文83-111(2014).
    [17] Y.M. Qiao, S. Chandra, Spray Cooling Enhancements by Addition of a Surfactant, ASME J. Heat Transf. 120 (1998) 92-98.
    [18] Y.C. Hon, T. Wei, A Fundamental Solution Method for Inverse heat conduction problem, Eng. Anal. Bound. Elem. 28 (2004) 489-495.
    [19] 黃得晉, 洪炎星, 金屬二次加工技術roadmap-鑄造、熱處理, 金屬中心5-14 (2005).

    下載圖示 校內:2018-08-11公開
    校外:2018-08-11公開
    QR CODE