| 研究生: |
歐索夫 Ozhgibesov, Mikhail |
|---|---|
| 論文名稱: |
氬氣原子與鎢原子表面交互作用之新型邊界條件發展及其應用於奈米管流之研究 Development of new boundary conditions for argon-tungsten interactions and their implementation for nanochannel flow studies |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 共同指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 外文關鍵詞: | molecular dynamics, argon–tungsten interactions, boundary conditions, rarefied gas flow |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this study, scattering processes of argon beam impinging on tungsten surface are investigated numerically by applying molecular dynamics (MD) simulations. Energy transfer, momentum change, and scattering processes of argon gas atoms from W(110) surface are discussed.
A new model of argon–tungsten (Ar–W) interaction is proposed. Based on the new proposed model, one can simplify the boundary conditions of this problem. The new boundary conditions are proved to be in line with previous experimental and theoretical results. This thesis demonstrates how to proceed normalization and further conversion of the MD simulation results into boundary conditions.
The newly proposed boundary conditions for Ar–W interactions have been utilized for numerical simulations of rarefied gas flow through nano-channels using the MD method. Taking into account that this method is very time consuming, we implemented all the simulations using CUDA capable Graphic Cards.
We found that the well-known and relatively simple Maxwell model of boundary conditions is able to reproduce gas flow through a tungsten channel with irregularities and roughness, while it results in a significant error in the case of a smooth metal surface. We further found that the flow rate through a relatively short channel correlates nonlinearly with the channel's length. This finding is in contrast with the results available in extant literature. Our results are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow.
[1] I.A. Waitz, G. Gauba, Y.-S. Tzeng, Combustors for Micro-Gas Turbine Engines, Journal of Fluids Engineering, 120 (1998) 109-117.
[2] F. Sharipov, V. Seleznev, Data on Internal Rarefied Gas Flows, Journal of Physical and Chemical Reference Data, 27 (1998) 657-706.
[3] R.M. Young, Analysis of a micromachine based vacuum pump on a chip actuated by the thermal transpiration effect, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17 (1999) 280-287.
[4] H. Yen-Lin, Thermal-Creep-Driven Flows in Knudsen Compressors and Related Nano/Microscale Gas Transport Channels, Microelectromechanical Systems, Journal of, 17 (2008) 984-997.
[5] K. Aoki, P. Degond, S. Takata, H. Yoshida, Diffusion models for Knudsen compressors, Phys Fluids, 19 (2007) 117103-117121.
[6] E.P. Muntz, Y. Sone, K. Aoki, S. Vargo, M. Young, Performance analysis and optimization considerations for a Knudsen compressor in transitional flow, J Vac Sci Technol A, 20 (2002) 214-224.
[7] S. Taguchia, Diffusion model for Knudsen-type compressor composed of periodic arrays of circular cylinders, Phys Fluids, 22 (2010).
[8] S. Takata, H. Funagane, K. Aoki, Fluid Modeling for the Knudsen Compressor: Case of Polyatomic Gases, Kinet Relat Mod, 3 (2010) 353-372.
[9] S.E. Vargo, E.P. Muntz, G.R. Shiflett, W.C. Tang, Knudsen compressor as a micro- and macroscale vacuum pump without moving parts or fluids, J Vac Sci Technol A, 17 (1999) 2308-2313.
[10] P. Bernardo, E. Drioli, G. Golemme, Membrane Gas Separation: A Review/State of the Art, Industrial & Engineering Chemistry Research, 48 (2009) 4638-4663.
[11] M. Napoli, P. Atzberger, S. Pennathur, Experimental study of the separation behavior of nanoparticles in micro- and nanochannels, Microfluidics and Nanofluidics, 10 (2011) 69-80.
[12] S. Takata, H. Sugimoto, S. Kosuge, Gas separation by means of the Knudsen compressor, Eur J Mech B-Fluid, 26 (2007) 155-181.
[13] S. Uemiya, State-of-the-Art of Supported Metal Membranes for Gas Separation, Separation & Purification Reviews, 28 (1999) 51-85.
[14] G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Clarendon Press ;Oxford University Press, OxfordNew York, 1994.
[15] I. Graur, F. Sharipov, Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section, Microfluidics and Nanofluidics, 6 (2009) 267-275.
[16] G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows, Springer, 2005.
[17] M.E. Kassner, S. Nemat-Nasser, Z. Suo, G. Bao, J.C. Barbour, L.C. Brinson, H. Espinosa, H. Gao, S. Granick, P. Gumbsch, K.-S. Kim, W. Knauss, L. Kubin, J. Langer, B.C. Larson, L. Mahadevan, A. Majumdar, S. Torquato, F. van Swol, New directions in mechanics, Mechanics of Materials, 37 (2005) 231-259.
[18] O. Reynolds, Note on Thermal Transpiration, Proceedings of the Royal Society of London, 30 (1880) pp. 300-302.
[19] J.C. Maxwell, On Stresses in Rarified Gases Arising from Inequalities of Temperature, Philosophical Transactions of the Royal Society of London, 170 (1879) 231-256.
[20] M. Knudsen, Die Molekularströmung der Gase durch Offnungen und die Effusion, Annalen der Physik, 333 (1909) 999-1016.
[21] S. Dushman, Production and measurement of high vacuum, General electic review, Schenectady, N.Y.,, 1922.
[22] P. Clausing, The Flow of Highly Rarefied Gases through Tubes of Arbitrary Length, Journal of Vacuum Science and Technology, 8 (1971) 636-646.
[23] W.C. DeMarcus, E.H. Hopper, Knudsen Flow through a Circular Capillary, The Journal of Chemical Physics, 23 (1955) 1344-1344.
[24] D.H. Davis, Monte Carlo Calculation of Molecular Flow Rates through a Cylindrical Elbow and Pipes of Other Shapes, Journal of Applied Physics, 31 (1960) 1169-1176.
[25] D.L. Warrick, E. Mack, A Copper Membrane Gas-Molecule Sieve. Callendar's Theory of Osmosis, Journal of the American Chemical Society, 55 (1933) 1324-1332.
[26] R.W. Hanks, H.L. Weissberg, Slow Viscous Flow of Rarefied Gases through Short Tubes, Journal of Applied Physics, 35 (1964) 142-144.
[27] H. Shinagawa, H. Setyawan, T. Asai, Y. Sugiyama, K. Okuyama, An experimental and theoretical investigation of rarefied gas flow through circular tube of finite length, Chemical Engineering Science, 57 (2002) 4027-4036.
[28] S.F. Borisov, A.N. Kulev, B.T. Porodnov, P.E. Suetin, S.T. Barashkin, Thermomolecular pressure difference at low knudsen numbers, Journal of Engineering Physics and Thermophysics, 25 (1973) 1131-1133.
[29] Y. Sone, K. Yamamoto, Flow of Rarefied Gas through a Circular Pipe, Phys Fluids, 11 (1968) 1672-1678.
[30] T. Fujimoto, M. Usami, Rarefied Gas Flow Through a Circular Orifice and Short Tubes, Journal of Fluids Engineering, 106 (1984) 367-373.
[31] A. Sreekanth, Transition Flow through Short Circular Tubes, Phys. Fluids, 8 (1965) 1951.
[32] R. Johnsen, Flow of binary gas mixtures through small sampling orifices, J. Vac. Sci. Technol. A, 29 (2011) 011002.
[33] L. Marino, Experiments on rarefied gas flows through tubes, Microfluidics and Nanofluidics, 6 (2009) 109-119.
[34] S. Varoutis, D. Valougeorgis, O. Sazhin, F. Sharipov, Rarefied gas flow through short tubes into vacuum, 26 (2008) 228-238.
[35] J. Lu, W.-Q. Lu, A numerical simulation for mass transfer through the porous membrane of parallel straight channels, International Journal of Heat and Mass Transfer, 53 (2010) 2404-2413.
[36] F. Sharipov, Rarefied gas flow through a long tube at any temperature ratio, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14 (1996) 2627-2635.
[37] P.L. Bhatnagar, E.P. Gross, M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, 94 (1954) 511-525.
[38] D. Valougeorgis, An analytical solution of the S-model kinetic equations, Z. angew. Math. Phys., 54 (2003) 112-124.
[39] F. Sharipov, Rarefied gas flow through a long rectangular channel, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (1999) 3062-3066.
[40] C. Shen, J. Fan, C. Xie, Statistical simulation of rarefied gas flows in micro-channels, Journal of Computational Physics, 189 (2003) 512-526.
[41] E.B. Arkilic, M.A. Schmidt, K.S. Breuer, Gaseous slip flow in long microchannels, Microelectromechanical Systems, Journal of, 6 (1997) 167-178.
[42] V. Titarev, E. Shakhov, Nonisothermal gas flow in a long channel analyzed on the basis of the kinetic <i>S</i>-Model, Computational Mathematics and Mathematical Physics, 50 (2010) 2131-2144.
[43] T.C. Lilly, S.F. Gimelshein, A.D. Ketsdever, G.N. Markelov, Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases, Phys Fluids, 18 (2006) 093601-093611.
[44] F. Sharipov, Non-isothermal rarefied gas flow through a slit, Phys Fluids, 9 (1997) 1804-1810.
[45] F. Sharipov, D.V. Kozak, Rarefied gas flow through a thin slit into vacuum simulated by the Monte Carlo method over the whole range of the Knudsen number, 27 (2009) 479-484.
[46] F. Sharipov, D.V. Kozak, Rarefied gas flow through a thin slit at an arbitrary pressure ratio, European Journal of Mechanics - B/Fluids, 30 (2011) 543-549.
[47] A.A. Alexeenko, S.F. Gimelshein, E.P. Muntz, A.D. Ketsdever, Kinetic modeling of temperature driven flows in short microchannels, International Journal of Thermal Sciences, 45 (2006) 1045-1051.
[48] S. Varoutis, D. Valougeorgis, F. Sharipov, Simulation of gas flow through tubes of finite length over the whole range of rarefaction for various pressure drop ratios, 27 (2009) 1377-1391.
[49] D.C. Wadsworth, D.A. Erwin, Numerical simulation of rarefied flow through a slit. Part I: Direct simulation Monte Carlo results, Physics of Fluids A: Fluid Dynamics, 5 (1993) 235-242.
[50] M. Wang, X. Lan, Z. Li, Analyses of gas flows in micro- and nanochannels, International Journal of Heat and Mass Transfer, 51 (2008) 3630-3641.
[51] F. Sharipov, G. Bertoldo, Rarefied gas flow through a long tube of variable radius, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23 (2005) 531-533.
[52] J. Ghazanfarian, A. Abbassi, Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method, Physical Review E, 82 (2010) 026307.
[53] S. Taguchi, P. Charrier, Rarefied gas flow over an in-line array of circular cylinders, Phys Fluids, 20 (2008) 067103-067116.
[54] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, F. Toschi, Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows, Physical Review Letters, 97 (2006) 204503.
[55] C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nat Mater, 2 (2003) 237-240.
[56] X.-B. Mi, A. Chwang, Molecular Dynamics Simulations of Nanochannel Flows at Low Reynolds Numbers, Molecules, 8 (2003) 193-206.
[57] H. Okumura, D.M. Heyes, Stationary temperature profiles in a liquid nanochannel: Comparisons between molecular-dynamics simulation and classical hydrostatics, Physical Review E, 74 (2006) 061201.
[58] J. Sun, Y. He, W. Tao, X. Yin, H. Wang, Roughness effect on flow and thermal boundaries in microchannel/nanochannel flow using molecular dynamics-continuum hybrid simulation, International Journal for Numerical Methods in Engineering, 89 (2012) 2-19.
[59] I. William A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate, Handbook of Nanoscience, Engineering, and Technology, Taylor & Francis Group, 2012.
[60] W. Zhang, D. Li, Simulation of low speed 3D nanochannel flow, Microfluidics and Nanofluidics, 3 (2007) 417-425.
[61] T.-S. Leu, C.-H. Cheng, M.S. Ozhgibesov, New modeling of scattering behaviors of argon atoms on tungsten substrate, Journal of Molecular Graphics and Modelling, 31 (2011) 35-40.
[62] M. Sharan, B. Singh, A numerical model for the oxygenation of blood in lung capillaries — effect of nth order one-step kinetics of oxygen uptake by haemoglobin, Biosystems, 24 (1990) 209-214.
[63] K.E. Parmenter, F. Milstein, Mechanical properties of silica aerogels, Journal of Non-Crystalline Solids, 223 (1998) 179-189.
[64] E.P. Muntz, S.E. Vargo, An evaluation of a multiple-stage micromechanical Knudsen compressor and vacuum pump, in: C. Shen (Ed.) Rarefied Gas Dynamics, Peking University Press, Peking, 1997, pp. 995-1000.
[65] B.J. Alder, T.E. Wainwright, Studies in Molecular Dynamics. {I. G}eneral Method, J. Chem. Phys., 31 (1959) 459-466.
[66] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, 1989.
[67] C.A. Angell, M. Goldstein, N.Y.A.o. Sciences, Dynamic aspects of structural change in liquids and glasses, New York Academy of Sciences, 1986.
[68] M. Barisik, A. Beskok, Surface–gas interaction effects on nanoscale gas flows, Microfluidics and Nanofluidics, 13 (2012) 789-798.
[69] W.-M. Zhang, G. Meng, X. Wei, A review on slip models for gas microflows, Microfluidics and Nanofluidics, 13 (2012) 845-882.
[70] H. Zhang, Z. Zhang, H. Ye, Molecular dynamics-based prediction of boundary slip of fluids in nanochannels, Microfluidics and Nanofluidics, 12 (2012) 107-115.
[71] C. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations And Micro Flows, Springer, 2005.
[72] I. Graur, A.P. Polikarpov, F. Sharipov, Numerical modeling of rarefied gas flow through a slit into vacuum based on the kinetic equation, Computers & Fluids, 49 (2011) 87-92.
[73] S.C. Saxena, R. Afshar, Thermal accommodation coefficient of gases on controlled solid surfaces: Argon-tungsten system, International Journal of Thermophysics, 6 (1985) 143-163.
[74] J. Kouptsidis, D. Menzel, Accommodation of the Rare Gases on Clean Tungsten Surfaces Between 77 and 380 K, Berichte der Bunsengesellschaft für physikalische Chemie, 74 (1970) 512-520.
[75] W.C. Mitchels, Accommodation Coefficients of Helium and Argon against Tungsten, Physical Review, 40 (1932) 472-473.
[76] S. Prabha, S. Sathian, Determination of accommodation coefficients of a gas mixture in a nanochannel with molecular dynamics, Microfluidics and Nanofluidics, 13 (2012) 883-890.
[77] H. Michelsen, Derivation of a temperature-dependent accommodation coefficient for use in modeling laser-induced incandescence of soot, Applied Physics B: Lasers and Optics, 94 (2009) 103-117.
[78] W.H. Weinberg, R.P. Merrill, Scattering of Helium, Neon, Argon, Krypton, Xenon, and Deuterium from a Tungsten (110) Surface Characterized by LEED, The Journal of Chemical Physics, 56 (1972) 2881-2892.
[79] G. Fan, J.R. Manson, Theory of direct scattering, trapping, and desorption in atom-surface collisions, Physical Review B, 79 (2009) 045424.
[80] K.D. Gibson, N. Isa, S.J. Sibener, Experiments and simulations of Ar scattering from an ordered 1-decanethiol–Au(111) monolayer, The Journal of Chemical Physics, 119 (2003) 13083.
[81] D. Chase, M. Manning, J.A. Morgan, G.M. Nathanson, R.B. Gerber, Argon scattering from liquid indium: Simulations with embedded atom potentials and experiment, The Journal of Chemical Physics, 113 (2000) 9279-9287.
[82] L.A. Girifalco, V.G. Weizer, Application of the Morse Potential Function to Cubic Metals, Physical Review, 114 (1959) 687-690.
[83] J.E. Jones, On the Determination of Molecular Fields. II. From the Equation of State of a Gas, Proceedings of the Royal Society of London. Series A, 106 (1924) 463-477.
[84] T.H.K. Barron, C. Domb, On the Cubic and Hexagonal Close-Packed Lattices, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 227 (1955) 447-465.
[85] A. Rocha-Ichante, F. del Rio, E. Avalos, Equation of state and liquid-vapor equilibrium of polarizable Stockmayer fluids, The Journal of Chemical Physics, 133 (2010) 224301-224312.
[86] C. Møller, M.S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, 46 (1934) 618-622.
[87] P. Čárský, J. Paldus, J. Pittner, Recent Progress in Coupled Cluster Methods: Theory and Applications, Springer, 2010.
[88] L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, 159 (1967) 98.
[89] R.J. Rost, Opengl Shading Language, 2nd ed., Addison Wesley, 2006.
[90] M.J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics, Addison-Wesley Professional, 2003.
[91] NVIDIA, CUDA Parallel Computing Platform, in, NVIDIA.
[92] T.P. Group, PGI CUDA Fortran Compiler, in.
[93] J. Yang, Y. Wang, Y. Chen, GPU accelerated molecular dynamics simulation of thermal conductivities, Journal of Computational Physics, 221 (2007) 799-804.
[94] M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L. Beberg, D.L. Ensign, C.M. Bruns, V.S. Pande, Accelerating molecular dynamic simulation on graphics processing units, Journal of Computational Chemistry, 30 (2009) 864-872.
[95] I.S. Ufimtsev, T.J. Martinez, Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation, Journal of Chemical Theory and Computation, 4 (2008) 222-231.
[96] D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, 2002.
[97] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald, Parallel Programming in OpenMP, Elsevier Science, 2000.
[98] J. Anderson, C. Lorenz, A. Travesset, General purpose molecular dynamics simulations fully implemented on graphics processing units, Journal of Computational Physics, 227 (2008) 5342-5359.
[99] J.E. Stone, D.J. Hardy, I.S. Ufimtsev, K. Schulten, GPU-accelerated molecular modeling coming of age, Journal of Molecular Graphics and Modelling, 29 (2010) 116-125.
[100] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten, Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry, 28 (2007) 2618-2640.
[101] NVIDIA, CUDA GPUs, in, NVIDIA Corp.
[102] K.C. Janda, J.E. Hurst, C.A. Becker, J.P. Cowin, D.J. Auerbach, L. Wharton, Direct measurement of velocity distributions in argon beam--tungsten surface scattering, The Journal of Chemical Physics, 72 (1980) 2403-2410.
[103] P.M. Agrawal, L.M. Raff, A semiclassical wave packet model for the investigation of elastic and inelastic gas--surface scattering, The Journal of Chemical Physics, 77 (1982) 3946-3952.
[104] A. Papoulis, Probability, random variables, and stochastic processes, 3rd ed., McGraw-Hill, New York, 1991.
[105] L. Tribe, M. Manning, J.A. Morgan, M.D. Stephens, W.R. Ronk, E. Treptow, G.M. Nathanson, J.L. Skinner, Argon Scattering off the Surface of Liquid Indium: Exit Angle and Energy Dependence, The Journal of Physical Chemistry B, 102 (1998) 206-211.
[106] R.E. Walpole, Probability & statistics for engineers & scientists, 8th ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2007.
[107] O.V. Sazhin, S.F. Borisov, F. Sharipov, Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19 (2001) 2499-2503.
[108] D. Zhao, J.E. Adams, Coverage dependence of gas-surface energy transfer, Langmuir, 1 (1985) 557-564.
[109] M.S. Ozhgibesov, T.S. Leu, C.H. Cheng, A.V. Utkin, New statistical boundary conditions for argon–tungsten interactions, Journal of Molecular Graphics and Modelling, 38 (2012) 375-381.