| 研究生: |
林育如 Lin, Yu-Ju |
|---|---|
| 論文名稱: |
利用階梯函數變換以穩定微陣列資料之變異數轉換 A step function approach in stabilizing variance for microarray data |
| 指導教授: |
詹世煌
Chan, Shin-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 微陣列 、無母數變異數穩定 、階梯函數 |
| 外文關鍵詞: | microarray, nonparametric variance stabilization, step function |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微陣列資料中基因的變異數通常會不一致,而與基因的平均數呈現某種函數關係。此種變異數的不穩定使得許多假設變異數為一致的統計方法不適於應用。針對微陣列資料,Durbin et al. (2002) 和 Inoue et al. (2004) 對單一顏色的基因表現值資料提出基因表現模型並推導出變異數與平均數的函數關係,進而求得使變異數穩定的變數變換。Rocke 和 Durbin (2001, 2004) 則針對兩種顏色的微陣列資料提出基因表現值的模型並發展出有母數變異數穩定轉換法。鑒於有母數變換不具穩健性,Chung (2006) 不透過任何基因表現值的模型,而從實際資料的變異數對平均數的散佈圖中以lowess法找出兩者的關係,再以指數函數在小區間上從事變數轉換,惟Chung 的方法在資料轉換後出現不合理的群聚現象。
在本研究中,我們探討對兩種顏色微陣列表現比之對數值的變異數穩定問題。首先以無母數lowess法得到估計之變異數函數,之後利用階梯函數的概念,估計區域性之變異數與平均數之間的函數關係,再以變異數穩定轉換的方式來轉換微陣列資料。結果發現本方法不僅改善了Chung 的無母數變異數穩定轉換法上的不連續現象,且在統計模擬或實例分析上,本方法明顯的比 Chung 的無母數法或有母數變異數穩定轉換有更好的成效。
For microarray data, the variances of genes are not constant, but function of mean expression level. As a result, it can not be analyzed by traditional statistical methods, which assume that the variance of noise is constant. Durbin et al. (2002) and Inoue et al. (2004) separately established the one-color gene expression models and derived the variance-stabilizing transformation functions based on the model they assumed. Rocke and Durbin (2001, 2004) considered two-color gene expression model and developed parametric variance-stabilizing transformation method. All of them took the parametric approach to stabilize the variance. Chung (2006), concerned about the robustness of parametric transformation approach, recommended a nonparametric variance-stabilizing transformation method. Chung (2006) investigated the scatter plot of variance versus mean and applied lowess method to estimate the variance function. He used exponential function to approximate the variance function in a small region, but the results are weird and unreasonable.
In this thesis, we transform the microarray data with a nonparametric approach. We estimate the relationship between variance and mean of gene expression by lowess regression, then locally take step function to approximate the lowess curve. We find that the nonparametric step function transformation method is able to solve the problem of intermittent pattern from Chung’s approach. Simulation study and real data analysis show that the performance of the suggested method is better than the parametric variance-stabilizing transformation method and Chung’s nonparametric approach in stabilizing variance.
Reference
Durbin, B. P., Hardin, J. S. Hawkins, D. M. and Rocke, D. M. (2002). A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics, 18, 105-110.
Durbin, B. P. and Rocke, D. M. (2004). Variance-stabilizing transformations for two-color microarrays. Bioinformatics, 20, 660-667.
Inoue, M., Nishimura, S. I., Hori, G., Nakahara, H., Saito, M., Yoshihara, Y. and Amar, S. I. (2004). Improved parameter estimation for variance-stabilizing transformation of gene-expression microarray data. Journal of Bioinformatics and Computational Biology, 2, 669-679.
Rocke, D. M. and Durbin B. P. (2001). A model for measurement error for gene expression arrays. Journal of Computational Biology, 8, 557-569.
Chung, Xiang-Yu (2006). A nonparametric variance-stabilizing transformation method in cDNA microarray. National Cheng Kung University.