| 研究生: |
洪子超 Hung, Tzu-Chao |
|---|---|
| 論文名稱: |
以費雪訊息探討量子理論 Fisher information in Quantum Theory |
| 指導教授: |
楊緒濃
Nyeo, Su-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 費雪訊息 、統計距離 、本徵的機率分佈 、薛丁格方程式 |
| 外文關鍵詞: | Fisher information, statistical distance, intrinsic probability distributions, Schrodinger equation |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
費雪訊息 (Fisher Information) 在統計量測和訊息理論中扮演著重要角色。當我們量測系統時引發出類似機率概念的東西,稱之為「似然性」,而其可描述一系統之亂度。費雪訊息與 Kullback-Leibler 熵值相關,且滿足 Cramer-Rao 不等式,更與統計距離 (Statistical Distance) 有密切關連。
在此篇論文中,藉由費雪訊息我們提供連接古典物理和量子物理的橋梁。而藉著最小費雪訊息原理 (The Principle of Minimum Fisher Information),我們可以從哈密頓-亞可比方程式 (Hamilton-Jacobi Equation) 得到量子物理 --- 薛丁格方程式。
費雪訊息矩陣 (Fisher Information Matrix) 可被視為一度規張量(Metric) g,我們由此可導出於時空中機率分部的限制條件。我們假設時空存在著本徵的機率分佈,藉由著優化費雪訊息度規 (Fisher Information Metric) 可以得到機率分佈。藉由此方法我們可得到一些微分方程來描述在時空中本徵的機率分佈。
Fisher information, which is an important concept in statistical estimation theory and information theory, provides a measurement of a disorder system, which is specified by a corresponding probability, the likelihood. Fisher information is related to the Kullback-Leibler entropy, satisfies the Cramér-Rao inequality, and is also related to statistical distance.
In this thesis, we provide a bridge to connect classical and quantum mechanics by using Fisher information. Following the principle of minimum Fisher information, we describe the mechanism of quantum world — the Schrödinger equation from the Hamilton-Jacobi equation.
For a given metric gµν, which is identified as Fisher information metric, we generate new constraints for the probability distributions for physical systems.We postulate the existence of intrinsic probability distributions for physical systems, and calculate the probability distribution by optimizing the Fisher information metric under specified constraints. Accordingly, we get differential equations for the probability distributions.
[1] D. Bohm, Phys. Rev. 85 (1952) 166, ibid. (1952) 180.
[2] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72 (1994) 3439.
[3] X. Calmet and J. Calmet, Phys. Rev. E 71 (2005) 056109.
[4] H. Cram´er, Mathematical Methods of Statistics (Princeton Univ. Press, Princeton, New Jersey, 1946).
[5] L. L. Campbell, Inform. Sci. 35 (1985) 199.
[6] L. de Broglie, Recherched sur la th´eorie des quanta (Researches on the quantum theory), Thesis (Paris), 1924; Ann. Phys. (Paris) 3 (1925) 22.
[7] R. A. Fisher, Proc. Cambridge Philos. Soc. 22 (1925) 700.
[8] B. R. Frieden, Science from Fisher Information (Cambridge Univ. Press, Cambridge, 2004).
[9] B. R. Frieden, Phys. Rev. A 41 (1990) 4265.
[10] B. R. Frieden and B. H. Soffer, Phys. Rev. E 52 (1995) 2274.
[11] B. R. Frieden, J. Mod. Opt. 35 (1988) 1297.
[12] B. R. Frieden, Am. J. Phys. 57 (1989) 1004.
[13] M. Fisz, Probability Theory and Mathematical Statistics, 3rd ed. (Wiley, New York, 1963), Sec. 5.2.
[14] P. Facchi, R. Kulkarni, V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Ventriglia, Phys. Lett. A 374 (2010) 4801.
[15] S. Gasiorowicz, Quantum Physics, 3rd ed. (John Wiley & Sons, New Jersey, 2003).
[16] B. V. Gnedenko, The Theory of Probability (Chelsea, New York, 1962) 85.
[17] G. W. Gibbons, J. Geom. Phys. 8 (1992) 147.
[18] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Prentice Hall, New Jersey, 2005).
[19] H. Goldstein, Classical Mechanics (Addison Wesley, Reading, 2002).
[20] S. Kullback and R. A. Leibler, Ann. Math. Statist. 22(1) (1951) 79.
[21] S. Kullback, Information theory and statistics (John Wiley and Sons, New York, 1959).
[22] H. Minkowski,“Raum und Zeit,” Physikalische Zeitschrift 10 (1908/9) 75.
[23] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman and company, San Francisco, USA, 1973).
[24] S. Amari and H. Nagaoka, Methods of Information Geometry (Oxford University Press, 2000).
[25] E. Nelson, Phys. Rev. 150(4) (1966) 1079.
[26] A. R. Plastino, M. Casas, and A. Plastino, Phys. Lett. A 246 (1998) 498.
[27] C. R. Rao, Bulletin of the Calcutta Mathematical Society 37 (1945) 81.
[28] M. Reginatto, Phys. Rev. A 58 (1998) 1775.
[29] J. J. Sakurai, Modern Quantum Mechanics, Rev. ed. (Addison-Wesley, Massachusetts, 1994).
[30] E. Schr¨odinger, Annalen der Physik 79(4) (1926) 361.
[31] K. Schwarzschild, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 189, ibid. 1916 (1916) 424.
[32] J. L. Synge, Classical Dynamics, in Encyclopedia of Physics, Vol. III/1, edited by S. Flugge (Springer-Verlag, Berlin, 1960).
[33] W. K. Wootters, Phys. Rev. D23 (1981) 357.