| 研究生: |
張勤 Chang, Chin |
|---|---|
| 論文名稱: |
硬模板法合成中孔洞氧化矽、氧化鋁空心球 Synthesis of Mesoporous Silica and Mesoporous Alumina Hollow Spheres by Using Hard-Templating Method |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氧化矽 、硬模板法 |
| 外文關鍵詞: | mesoporous silica, hard-templating method, alumina |
| 相關次數: | 點閱:73 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討使用硬模板法合成中空結構的氧化矽,氧化鋁空心球。利用表面活化法將硬模板球表面活化後,再將材料包覆一層氧化矽、氧化鋁球殼。實驗中選用PMMA球作為有機硬模板,搭配AEO、gelatin、F127、PEG4000等無毒,高生物相容性的表面活化劑,成功合成結構完整、分散性佳、再現性高之中孔洞氧化矽空心球與帶有空心結構的氧化鋁空心球。
合成中孔洞氧化矽空心球中,調整適當的表面活化劑對PMMA球的重量比,使氧化矽完整包覆於PMMA球表面,最後以鍛燒方法移除有機模板和表面活化劑後,即可得到具有高比表面積271-1014 m2g-1之中孔洞氧化矽空心球。此外,也改變表面活化劑對氧化矽源TEOS的比例,調控氧化矽空心球球殼厚度25- 60 nm;最後利用不同尺度的PMMA球50- 800 nm合成不同尺寸之氧化矽空心球。
合成高結晶度分散性佳氧化矽空心球與碳/氧化矽複合材料中,探討使用不同鍛燒溫度移除有機硬模板PMMA球後對氧化矽空心球結晶度的影響,利用表面修飾法,修飾有機矽烷於氧化矽空心球的表面,合成較疏水性質的氧化矽空心球。此外本研究也使用裂解的方式,碳化有機硬模板合成碳/氧化矽複合材料,探討其吸附甲基橙染料的行為,可使30 ppm的甲基橙水溶液,在一天的吸附過後濃度降低至約0 ppm。
在合成中孔洞氧化鋁空心球研究中,利用明膠自身的多種官能基(-NH2、-C=O、COOH、-OH)和PMMA球形成氫鍵作用活化PMMA表面後,與氫氧化鋁帶部分正電荷和明膠部分負電荷產生的靜電吸引力,最後鍛燒移除有機硬模板和表面活化劑,合成出中孔洞氧化鋁空心球,此外嘗試利用不同氧化鋁源,皆可合成出具有空心結構之氧化鋁空心球。氧化鋁空心球具有熱穩定性高、低堆積密度、良好的保溫性質,可作為觸媒載體及耐火材料,具有高應用的潛力。
The hard-templating method is widely used to prepare silica hollow spheres, Herein, two facile routes have been reported for the synthesis of mesoporous silica and carbon/silica hollow spheres using PMMA beads as sacrificial hard templates, AEO-L67 as a surface activation reagent, and TEOS as the silica source. In the first method, silica is condensed on the PMMA beads (PMMA@SiO2)and mesoporous silica hollow spheres (MSHS) are then obtained via calcination at 600℃ for 6 h to remove the organic parts. The MSHS are shown to have a high surface area range from 271- 1014 m2/g. Notably, by changing the PMMA bead size MSHS with a different size can be synthesized. The MSHS are further calcined at 950℃ for 2 hrs to increase their crystallization and reduce the adsorbed water content to less than 1 wt.%. In the second method, the PMMA@SiO2 is pyrolysized in Ar to synthesize carbon-silica hollow spheres. The experimental results show that the carbon-silica hollow spheres are capable of reducing the dye concentration in water from 30 ppm to 0 ppm in 24 hrs. The PMMA hard templating and calcination route is applied to synthesis of mesoporous alumina hollow spheres (MAHS) using aluminum sulfate as the alumina source and gelatin as a surface activation reagent.
In general, the silica and alumina hollow spheres synthesized in this study have good potential for industrial application as absorbents, catalysts and biomaterials. Compared to existing methods, the proposed methods have several key advantages, including the use of a non-toxic solvent, a one pot reaction and synthesized materials with high specific surface areas.
1.C. Kresge, M. Leonowicz, W. Roth, J. Vartuli and J. Beck, nature, 1992, 359, 710-712.
2.J. Beck, J. Vartuli, W. Roth, M. Leonowicz, C. Kresge, K. Schmitt, C. Chu, D. Olson and E. Sheppard, Journal of the American Chemical Society, 1992, 114, 10834-10843.
3.Sayari , Chem. Mater., 1996, 8, 1840.
4.R. Neumann, A. M. Khenkin, Chem. Commun., 1996, 23, 2643.
5.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63
6.M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
7.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
8.C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
9.C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
10.C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
11. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
12.W. Wang, S. Xie, W. Zhou and A. Sayari, Chemistry of materials, 2004, 16, 1756-1762.
13.J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angewandte Chemie, 2003, 115, 3254-3258.
14.A. Vinu, V. Murugesan and M. Hartmann, Chemistry of materials, 2003, 15, 1385-1393.
15.H.-P. Lina, C.-Y. Tangb and C.-Y. Linb, Jour nal of the Chi nese Chem i cal So ci ety, 2002, 49, 981-988.
16.V. Alfredsson and M. W. Anderson, Chemistry of materials, 1996, 8, 1141-1146.
17.H.-P. Lin and C.-Y. Mou, Accounts of chemical research, 2002, 35, 927-935.
18.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U. Kwon, O. Terasaki, S.-E. Park and G. D. Stucky, The Journal of Physical Chemistry B, 2002, 106, 2552-2558.
19.A. Bhaumik and S. Inagaki, Journal of the American Chemical Society, 2001, 123, 691-696.
20.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Angewandte Chemie International Edition, 2001, 40, 1258-1262.
21.A. Walcarius, M. Etienne and B. Lebeau, Chemistry of materials, 2003, 15, 2161-2173.
22.T. Yokoi, H. Yoshitake and T. Tatsumi, Journal of Materials Chemistry, 2004, 14, 951-957.
23.Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angewandte Chemie International Edition, 2003, 42, 413-417.
24.H. Chun Zeng, Current Nanoscience, 2007, 3, 177-181.
25.J. Jang, Cashew Nut Shell Liquid: A Goldfield for Functional Materials, Springer
26.F. Caruso, R. A. Caruso and H. Möhwald, Science, 1998, 282, 1111-1114.
27.X. Xu and S. A. Asher, Journal of the American Chemical Society, 2004, 126, 7940-7945.
28.G. Guan, Z. Zhang, Z. Wang, B. Liu, D. Gao and C. Xie, Advanced Materials, 2007, 19, 2370-2374.
29.X. W. D. Lou, L. A. Archer and Z. Yang, Advanced Materials, 2008, 20, 3987-4019.
30.Nico M. van Os, Nonionic Surfactants: Organic Chemistry, 1997.
31.R. Schrieber and H. Gareis, in Gelatine Handbook, Wiley-VCH Verlag GmbH & Co. KGaA,1-44, 2007
32.J. Iraelachvili, S. Marcelja and R. Horn, Q Rev Biophys, 1980, 13, 121-200.
33.S. Consola, M. Blanzat, E. Perez, J. C. Garrigues, P. Bordat and I. Rico‐Lattes, Chemistry-A European Journal, 2007, 13, 3039-3047.
34.L. Sepulveda and J. Cortes, The Journal of Physical Chemistry, 1985, 89, 5322-5324.
35.H. J. Shin, R. Ryoo, Z. Liu and O. Terasaki, J. Am. Chem.Soc.,2001,123,1246-1247.
36.馬振基, 2003,奈米材料科技原理與應用。台灣,全華科技圖書股份有限公司。
37.R. I. Walton, Chem. Soc. Rev. 2002, 31, 230.
38.X. Peng, Adv. Mater. 2003, 15, 459.
39.R. A. Laudise, 1962, Hydrothermal Synthesis of Single Crystals, New Jersey: John Wiley & Sons, Inc.
40.R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
41.A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
42.R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
43.M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
44.C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57.
45.J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
46.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712 .
47.A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
48.M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
49.R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
50.B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
51.D. R. Rolison, Science, 2003, 299, 1698-1701.
52.F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
53.M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
54.Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
55.M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
56.R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
57.A. Siyasukh, Y. Chimupala, N.Tonanon, Canbon, 2018, 134, 207-221.
58.林勺乃,”以表面活化法合成氧化矽空心球及核-殼結構奈米粒子”,國立成功大學研究所碩士論文, 2015.
59.龐鈞翰,”以硬模板法合成中孔洞氧化矽與金屬/氧化矽空心球及其應用”, 國立成功大學研究所碩士論文, 2017.
60.沈佑展,”中孔洞氧化鋁、錳氧化鋁合成之研究與應用”, 國立成功大學研究所碩士論文, 2018.