| 研究生: |
陳玉寶 Chen, Yu-Bao |
|---|---|
| 論文名稱: |
雙邊信用價差障礙選擇權之評價-混合型方法之應用 Valuation of Double-Barrier Credit Spread Option - The Hybrid Approach |
| 指導教授: |
王明隆
Wang, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 有限差分 、拉普拉斯轉換 、障礙選擇權 、信用價差 |
| 外文關鍵詞: | the Laplace transformation, Credit spread, Barriers, the Finite difference method |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究使用拉普拉斯轉換(Laplace transform)和有限差分法(finite difference method)來評價雙邊障礙信用價差選擇權(double-barrier credit spread option)。傳統的顯然有限差分法(Explicit Finite difference)雖簡單易懂,卻存在穩定性(Stability)的問題,卽較難收歛至精確的數值解(numerical solution);隱然有限差分法(Implicit finite difference)雖會收歛到精確數值解,但當我們將時間變數間距(Time step)縮小時,其計算過程卻相當耗時。使用上述組合型方法(Hybrid method)的優點在於經過拉普拉斯轉換之後,排除了時間變數,因此,傳統之有限差分法運算耗時及不易收歛到精確數值解的問題都可獲得改善。本篇研究將以此組合型方法所求得轉換後之數值解,經由數值逆拉普拉斯轉換(numerical inversion of Laplace transform)後,即可求得在原來時間領域(Time domain)下任ㄧ時點的選擇權價格,整個計算的過程將更快速且穩定。
This paper uses the combination of the Laplace transformation and the finite difference method to value the double-barrier credit spread option. The major advantage of the combination method over the finite difference method is that the Laplace transformation will eliminate the time steps, thus, an accurate and precise numerical solution will be obtained quickly. The hybrid method can provide practitioners with a more efficient and applicable way to solve the PDE (partial differential equation) within various boundary constraints. Therefore, the method will be a highly powerful approach to price exotic options with complex features.
References
[1] Black F. and M. Scholes, 1973,“The Pricing of Options and Corporate Liabilities,” The Journal of Political Economy 81, 637
[2] Boyle, P. P., and S. H. Lau, 1994,“Bumping Up Against the Barrier with the Binomial Method,” Journal of Derivatives 1, 6-14
[3] Brennan M. J., and E. S. Schwartz. 1978,“Finite Difference Method and Jump Processes Arising in the Pricing of Contingent Claims,” Journal of Financial and Quantitative Analysis, 13, 461-474
[4] Brennan M. J., and E. S. Schwartz. 1976,“The valuation of American Put options,” Journal of Finance
[5] Cox, J. C., S. A. Ross, and M. Rubinstein, 1979, “Option Pricing: A Simplified
Approach,” Journal of Financial Economics 7, 229-264
[6] Cheuk, T. H. F., and T. C. F. Vorst, 1996, “Complex Barrier Options,” Journal of
Derivatives 4, 8-22
[7] Geske R., and K. Shastri. 1985,“Valuation of Approximation: a Comparison of Alternative Approaches,” Journal of Financial and Quantitative Analysis, 20, 45-72
[8] G. Honig and U. Hirdes, 1984,“A method for the numerical inversion of Laplace transforms,” J. Comput. Appl. Math. 9, 113-132
[9] Geman, H., and M. Yor, 1996, “Pricing and hedging double-barrier options: A probabilistic approach,” Mathematical Finance, Vol. 6, 365-378
[10] Haug E. G., 1997, “The Complete Guide to Option Pricing Formulus,”
McGraw-Hill, New York, 1997.
[11] Haug E. G., 1998,“Option Pricing Formulas,” McGraw-Hill, New York
[12] Heynen, P. and H. Kat, “Partial Barrier Option, 1994,” Journal of Financial
Engineering 3, 253-274
[13] Howard K., 1995, ”An Introduction to Credit Derivatives, ” Derivatives Quarterly, Vol. 2, 28-37,
[14] Hsueh, 2001, “Analysis of American Discrete Barrier Option with Stochastic
Rebate,” Journal of Financial Studies 9, 27-46
[15] Hull, J. and A. White. 1994, “Numerical Procedures for Implementing Term Structure Models I: Single-Factor Models.” Journal of Derivatives, 2 , 7-16
[16] Hull, J. and A. White. 1994, “Numerical Procedures for Implementing Term Structure Models II: Two-Factor Models.” Journal of Derivatives, 2 , 37-48
[17] H. T. Chen and C. K. Chen, 1988, “Hybrid Laplace transform/finite element method for Two-dimensional transient heat conduction problem,” Computer Methods in Applied Mechanics and engineering, 31-36
[18] H.T Chen and C.K. Chen, 1988, “Hybrid Laplace transform/finite difference method for transient heat conduction problems,” International Journal for Numerical Methods in Engineering, Vol. 26, 1433-1447
[19] Joao B. C., V. Helmut and C. Reinaldo, “On The Pricing Of Credit Spread Options: A Two Factor HW-BK Algorithm,” International Journal of Theoretical and Applied Finance, Vol.6 No.5 491-505
[20] Kennth R. Vetzal, 1998, “An improved finite difference approach to fitting the initial term structure,” The Journal of Fixed Income, 62-81
[21] Kunitomo, N., M. Ikeda, 1992, “Pricing options with curved boundaries,” Mathematical Finance 2, 275-298
[22] Longstaff F.A., and E.S. Schwartz, 1995, “Valuing Credit Derivatives,” The Journal of Fixed Income, Vol 5, 6-12
[23] Merton, R. C., 1973, “Theory of Rational Option Pricing,” Bell Journal of
Economics and Management Science 4, 141-183
[24] Pelsser, A., 2000, “Pricing double barrier options using Laplace transforms”, Finance and Stochastics 4, 95-104
[25] Rubinstein, M., and E. Reiner,1991,” Breaking Down the Barriers,” RISK 4, 28-35
[26] Rich, D., 1994, “The Mathematical Foundations of Barrier Option-Pricing Theory,” Advances in Futures and Options Research 7,267-311
校內:2106-06-29公開