| 研究生: |
李典樺 Lee, Tien-Hua |
|---|---|
| 論文名稱: |
利用光調制光譜及拉曼光譜研究砷化鎵表面-本徵-N+結構之表面特性 Studies of Surface Property of GaAs Surface-Intrinsic-N+ structures by Photoreflectance and Raman Spectroscopy |
| 指導教授: |
黃正雄
Hwang, J. S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 砷化鎵 、拉曼光譜 、光調制光譜 、表面費米能階 、表面態密度 、量子效率 |
| 外文關鍵詞: | Photoreflectance, surface Fermi level, quantum efficiency, surface state density, GaAs, Raman |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用光調制光譜及拉曼光譜來探討砷化鎵(GaAs)表面-本徵-N+(SIN+)結構之光電特性,如內建電場、表面勢壘、表面費米能階及表面態密度等等。在光調制光譜的實驗裡,我們分別利用蝕刻技術與光壓效應來研究GaAs SIN+結構。第一部份我們以化學蝕刻法研究GaAs SIN+結構之表面勢壘高度。第二部分量測不同激發光強度下的光調制光譜,根據熱游子輻射理論和電流傳輸理論可導出光調制光譜譜線強度與激發光強度之關係以及表面勢壘高度與激發光強度之關係,並利用理論推導之公式與實際量測的數據做最小平方擬合,得到表面費米能階及表面態密度。兩種關係式擬合出來之結果非常相近,代表由光壓效應所推導出的兩套公式可以相互驗證。由實驗可得知GaAs SIN+結構之表面費米能階是強釘扎於導帶邊緣以下0.70 eV左右,而表面態密度的數量級約在10^13 cm^-2,樣品之外部量子效率大約在5%左右。實驗的結果顯示以<100>或<111> GaAs為基板成長的樣品,其光電特性如費米能階、表面態密度及量子效率等等並無顯著的差異。根據拉曼光譜的躍遷選擇規則以<100>基板成長的樣品,應無橫向光性模(TO mode)出現,但實際量測到的光譜除了縱向光性模(LO mode)外,TO mode也同時出現,顯示基板的方現可能偏離<100>的方向。另外由拉曼譜線的位置顯示樣品的未摻雜層厚度小於500Å時,LO mode位置出現偏移,此顯示內部有應力的存在。
The electro-optical properties of a series of GaAs surface-intrinsic-N+ (SIN+) structures are studied by photoreflectance(PR) and Raman spectroscopy. Samples with various thicknesses of intrinsic layer are obtained with the technique of chemical etching. The built-in electric field and the surface barrier height of the samples with various intrinsic layer thicknesses are determined from the PR spectra. The intensity of the PR spectrum is measured as a function of the pump beam power. Based on the thermionic emission theory and the current transport theory, theoretical equations of the dependence of the PR spectrum intensity and surface barrier height on the pump beam intensity are derived. From the least-squares fits of the experimental results to the theoretical relations, the surface Fermi level and the surface state density can be obtained. The results obtained from two different approaches are in good agreement. The surface Fermi level of GaAs SIN+ structures is found to be pinned at about 0.70 eV below the conduction band edge. The surface state density and the external quantum efficiency are at the magnitude order of 10^13 cm^-2 and 5%, respectively. Finally, Raman spectra are employed to investigate the quality of the samples. For the samples grown on <100> GaAS, both the TO and LO modes appear in the Raman spectra indicates that the quality of the samples is not very satisfactory or a deviation exists in the <100> direction of the GaAs. In addition, the red shift of the Raman peak of the samples with 0 to 500 Å intrinsic layer thicknesses may result from stress.
1. K. Onabe, Y. Tashiro and Y. Ide, Sur. Sci. 174, 401 (1986).
2. S. Yamada, T. Fukui and A. Sugimura, Sur. Sci. 174, 444 (1986).
3. R. Dingle, W. Wiegman and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974).
4. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985)
5. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987).
6. L. Aigouy, F. H. Pollak and G. Gumbs, Appl. Phys. Lett. 70, 2562 (1997).
7. W. Zhou, H. Shen, J. Pamulapati, P. Cooke and M. Dutta, Appl. Phys. Lett. 66, 607 (1995).
8. M. Nakayama, T. Doguchi and H. Nishimura, J. Appl. Phys. 72, 2372 (1992).
9. P. A. M. Rodrigues, F. Cerdeira and J. C. Bean, Phys. Rev. B 46, 15263 (1992).
10. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
11. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
12. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
13. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett. 46, 970 (1985).
14. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
15. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
16. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
17. R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B 37, 4044 (1988).
18. R. L. Ober, J. Pamulaoati, P. K. Bhattacharya and J. E. Oh, J. Electron Mat. 18, 379 (1989).
19. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765 (1999).
20. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett. 64, 3314 (1994).
21. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).
22. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett. 46, 1230 (1981).
23. M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys. 56, 3214 (1984).
24. D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605 (1973).
25. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
26. D. E. Aspnes, M. Balkanski and ed., Handbook on Semiconductors, Vol. 2, North-Holland, New York, c1980, p. 109; also Surf. Sci. 37, 418 (1973).
27. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts. 52, 2058 (1988).
28. N. Jaffrezic-Renault, H. Perrot and C. Nguyen van Huong, Electrochimica Acta 34, 1739 (1989).
29. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg and J. C. Bean, Phys. Rev. B 44, 5955 (1991).
30. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
31. D. E. Aspnes, Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
32. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
33. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol. B 7, 804 (1989).
34. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B 36, 9384 (1987).
35. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
36. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
37. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
38. W. E. Spicer, I. Lindau, P. Skeath and C. Y. Su, J. Vac. Sci. Technol. 17, 1019 (1980)
39. H. Hasegawa, Jpn. J. Appl. Phys. 38, 1161 (1999)
40. M. H. Hecht, Phys. Rev. B 41, 7918 (1990).
41. M. H. Hecht, J. Vac. Sci. Technol. B8, 1018 (1990).
42. X. Yin, H. M. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol. A10, 133 (1992).
43. H. Shen, M. Dutta, J. Appl. Phys. 78, 2151 (1995).
44. T. Kanata, M. Matsunaga, H. Takaura, Y. Hamakawa and T. Nishino, Proceedings of the Society of Photo-Optical Instrumentation Engineers, SPIE, Bellingham, c1990, vol.1286, p.56.
45. H. Hovel, Semiconductors and Semimetals, Academic, New York, c1975, vol.11, p.59.
46. S. M. Sze, Semiconductor Devices Physics and Technology, Wiley, New York, c1985.
47. S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Prentice Hall, c2001, p.253.
48. B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics, Wiley, c1991, p.649.
49. Endel Uiga, Optoelectronics, Prentice Hall, c1995, p.208.
50. N. B. Colthug, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston, c1990.
51. Koli Yano and Takashi Katoda, J. Appl. Phys. 70, 7036 (1991).
52. D. P. Bour, J. R. Shealy, A. Ksendzov and Fred Pollak, J. Appl. Phys. 64, 6456 (1988).
53. K. K. Tiong, P. M. Amirtharaj, F. H. Pollak and D. E. Aspnes, Appl. Phys. Lett. 44, 122 (1984)
54. M. Holtz, R. Zallen, and R. A. Sodler, J. Appl. Phys. 59, 1946 (1986)
55. M. Holtz and R. Zallen, J. Appl. Phys. 59, 1946 (1986).
56. M. Holtz, R. Zallen and O.Brafman, Phys. Rev. B 59, 4609 (1988).
57. P. S. Peercy, Appl. Phys. Lett. 18, 574 (1971).
58. C. S. Rama Rao and S. Sundaram, J. Appl. Phys. 54, 1808 (1983).
59. G. Braunstein, D. Tuschel, Samuel Chen and S.-Tong Lee, J.Appl. Phys. 66, 3515 (1989).
60. P. S. Pizani and F. Lanciotti, J. Appl. Phys. 87, 1280 (2000).