簡易檢索 / 詳目顯示

研究生: 林鈺烜
Lin, Yu-Hsuan
論文名稱: 鎳摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性
Crystal Structure and Ionic Conductivity of La9.5Ge6-xNixO26.25-x Electrolytes of Apatite Structure
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 鍺酸鑭磷灰石結構離子導體
外文關鍵詞: lanthanum germanate, nickel, apatite, ionic conductivity
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用固態反應法,添加不同量的 Ni2+ 取代鍺酸鑭基磷灰石材料 (La9.5Ge6-xNixO26.25-x,x = 0,0.1,0.15,0.2,0.25,0.5,0.75,1),觀察晶體結構的變化及與導電性質間的關聯性。
    實驗結果顯示當鎳的添加量約在 x = 0.25 以上時,從 XRD 圖譜上觀察到二次相 LaNiO3 的生成,推測已超出其固溶範圍。將合成後的粉末以 Rietveld 方法模擬精算結構因子後,發現未添加鎳之樣品,其結構為六方晶系 (P63/m),且假設晶體結構中最大處,為間隙氧最可能通過之區域,模擬出 4 條間隙氧可能移動之類正弦路徑。而添加鎳之樣品,其結構為三斜晶系 (Pī),且結構中存在一瓶頸處,使得間隙氧通過困難,導致導電率降低。並經由相關文獻比對之後,發現其活化能較未添加鎳之樣品高,其原因應為結構發生相變化而導致。
    經由拉曼光譜分析和文獻比對,發現鍺酸鑭基系統其導電機制為間隙氧離子,而隨鎳添加量增加,用以導電之載體間隙氧離子數目減少,導致導電率降低。

    Apatite materials based on lanthanum germanates and doped with nickel (La9.5Ge6−xNixO26.25−x, x = 0, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1) were prepared to synthesize a single phase through solid-state method. XRD patterns indicate that the second phase (LaNiO3) existed when x = 0.25. Accordingly, the limit of solid solubility (x) was approximately 0.25. A single phase could be obtained when the compositional range was 0 ≤ x ≤ 0.25. Crystal structure analysis refined through the Rietveld method distinctly showed that the sample when x = 0 has a hexagonal structure (P63/m). From this result, four possible migration pathways may be established if the interstitial oxygen passes through the largest region in the entire crystal structure. These four pathways are screwlike, three-dimensional routes around the c axis for nickel-doped samples, which have triclinic structure. Because of the complicated structure, migration of interstitial oxygen becomes very difficult. The relationship between the decrease in conductivity and the decrease in interstitial oxygens may be explained by Raman spectroscopy.

    第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 3 第二章 前人文獻及理論基礎 4 2-1 燃料電池 4 2-1-1 燃料電池的原理 4 2-1-2 燃料電池之種類與優缺點 5 2-2 固態氧化物燃料電池 6 2-2-1 固態氧化物燃料電池之原理 6 2-2-2 固態氧化物燃料電池之材料需求 7 2-2-3 固態氧化物燃料電池電解質之種類 8 2-3 磷灰石固態電解質 12 2-3-1 磷灰石固態電解質結構 13 2-3-2 磷灰石固態電解質的導電傳遞載體 14 2-3-3 磷灰石固態電解質的導電方向 15 2-3-4 氧離子傳遞導電機制時機 16 2-4 鍺酸鑭基電解質 17 2-4-1 鍺酸鑭基電解質缺點 18 2-4-2 不同摻雜物對鍺酸鑭基電解質之影響 19 第三章 實驗方法與分析 22 3-1 粉末製備 23 3-1-1 起始原料 23 3-1-2 鎳摻雜鍺酸鑭基 La9.5Ge6-xNixO26.25-x 粉末製備 23 3-1-3 粉末之熱差/熱重分析 24 3-1-4 粉末煅燒處理 24 3-2 煅燒粉末分析 25 3-2-1 X 光粉末繞射儀 25 3-2-2 掃描式電子顯微鏡 26 3-2-3 拉曼光譜分析 27 3-2-4 X 光光電子能譜分析 27 3-3 燒結體製備 27 3-4 燒結體分析 28 3-4-1 燒結收縮量測 28 3-4-2 燒結體密度量測 28 3-4-3 X 光繞射儀 28 3-4-3 掃描式電子顯微鏡 28 3-4-5 電性量測 29 3-4-6 Arrhenius 方程式 29 第四章 結果與討論 31 4-1 起始粉末分析 31 4-1-2 熱差/熱重分析 34 4-2 煅燒粉末分析 35 4-2-1 結晶相分析 35 4-2-2 晶格常數計算 38 4-2-3 晶體結構模擬 43 4-2-4 微結構分析 50 4-3 拉曼光譜分析 52 4-4 XPS 分析 54 4-5 燒結體分析 57 4-5-1 燒結收縮量測 57 4-5-2 燒結體密度量測 58 4-5-3 結晶相分析 59 4-5-4 微結構分析 60 4-6 電性分析 62 4-7 晶體結構與電性討論 65 第五章 與摻雜鎢之樣品比較 68 5-1 間隙氧數量比較 68 5-2 間隙氧移動路徑比較 69 5-3 La2-O3 區域變化 70 5-4 兩通道氧之間區域變化 76 5-5 兩系統之導電率比較 79 5-6 綜合討論 81 第六章 結論 82 參考文獻 83

    [1] S. Nakayama, H. Aono and Y. Sadaoka (1995), “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Chemistry Letters, 24, 431-432.
    [2] Y. Higuchi, M. Sugawara, K. Onishi, M. Sakamoto, S. Nakayama (2010), “Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC,” Ceramics International, 36, 955-959.
    [3] S. F. Wang, Y. F. Hsu, W. J. Lin, K. Kobayashi (2013), “Transition metal-doped lanthanum germanate apatites as electrolyte materials of solid oxide fuel cells.” Solid State Ionics, 176, 1941-1947
    [4] S. F. Wang, Y. F. Hsu, W. J. Lin (2013), “Effects of Nb5+, Mo6+, and W6+ dopants on the germanate-based apatites as electrolyte for use in solid oxide fuel cells. ” International Journal of Hydrogen Energy, 38, I2015-I2023
    [5] 台灣燃料電池夥伴聯盟,財團法人台灣經濟研究院版權所有。 FC介紹。2013年11月5日,取自台灣燃料電池資訊網,網址:http://www.tfci.org.tw/Fc/index.asp
    [6] U.S. Department of Energy, Fuel Cell Technologies Program, Comparison of Fuel Cell Technologies.
    http://www.hydrogenandfuelcells.energy.gov.
    [7] http://www.chinabaike.com/article/316/327/2007/2007022260477.html
    [8] K. J. and Z. Xiuying (2001), “Solid electrolytes used for SOFC”, Chinese Journal of Rare Metals, 25, 121-125
    [9] J. Z. and A. Thomas (2009), “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B: Environmental, 92 (3–4), 225-233.
    [10] T. Kharlamova, S. Pavlova, V. Sadykov, M. Chaikina, T. Krieger, A. Ishchenko, Y. Pavlyukhin, S. Petrov, and C. Argirusis (2010), “Mechanochemical Synthesis of Fe-Doped Apatite-Type Lanthanum Silicates,” 589-601.
    [11] Y. Nojiri, S. Tanasea, M. Iwasaa, H. Yoshiokac, Y. Matsumuraa, T. Sakaia (2010). “Ionic conductivity of apatite-type solid electrolyte material, La10−XBaXSi6O27−X/2,” Journal of Power Sources, 195, 4059-4064.
    (X = 0–1), and its fuel cell performance”
    [12] S. Nakayama, H. Aono and Y. Sadaoka (1995). Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy). Journal of Materials Chemistry, 5(11), 1801-1805.
    [13] A. Pons, J. Jouin, E. B_echade, I. Julien, O. Masson, P.M. Geffroy, R. Mayet, P. Thomas, K. Fukuda, I. Kagomiya (2014). “Study of the formation of the apatite-type phases La9.33+x(SiO4)6O2+3x/2 synthesized from a lanthanum oxycarbonate La2O2CO3,” Solid State Sciences, 38,150-155.
    [14] N. Takeda, Y. Itagaki, H. Aono, Y. Sadaoka (2006). “Preparation and characterization of Ln9.33+x/3Si6−xAlxO26 (Ln = La, Nd and Sm) with apatite-type structure and its application to a potentiometric O2 gas sensor,” Sensors and Actuators, B, 115, 455-459
    [15] P. R. Slater, J. E.H. Sansom, and J. R. Tolchard (2005), “Development of Apatite-Type Oxide Ion Conductors,” Chemistry Record, 4 (3), pp. 373-384.
    [16] S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki, and K. Itoh (1999), “Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” Journal of the European Ceramic Society, 19, pp. 507-510.
    [17] A. Jones, P. R. Slater, and M. Saiful Islam (2008), “Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5,” Chemistry of Materials, 20, 5055-5060.
    [18] J. E. H. Sansom, D. Richings, P. R. Slater (2001), “A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26,” Solid State Ionics, 139, 205-210
    [19] S. Tao, John T. S. Irvine (2001), “Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process,” Materials Research Bulletin, 36, 1245-1258
    [20] J. R. Tolchard, M. S. Islam and P. R. Slater (2003), “Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26,” Journal of Materials Chemistry, 13, 1956-1961
    [21] A. Orera, T. Baikie, P. Panchmatia, T. J. White, J. Hanna, M. E. Smith, M. S. Islam, E. Kendrick, and P. R. Slater (2011), “Strategies for the Optimisation of the Oxide Ion Conductivities of Apatite-Type Germanates,” Full Cells, 11, 10-16.
    [22] S. Nakayama and M. Sakamoto (2001), “Ionic conductivities of apatite-type Lax(GeO4)6O1.5x-12 (x=8-9.33) polycrystals,” Journal of Materials Science Letters, 20, 1627-1629.
    [23] J. E .H. Sansom, L. Hildebrandt, and P. R. Slater (2002), “An Investigation of the Synthesis and Conductivities of La-Ge-O Based Systems,” lonics, 8, 155-160.
    [24] 林婉茹、徐永富、王錫福 (2012),「摻雜對磷灰石結構鍺酸鑭基電解質應用於固態氧化物燃料電池之特性影響研究」,國立台北科技大學材料工程與科學研究所碩士論文。
    [25] T. Baikie, P. H. J. Mercier, M. M. Elcombe, J. Y. Kim,Y. L. Page, L. D. Mitchell, T. J. Whitea and P. S. Whitfield (2007), “Triclinic apatites,” Acta Crystallographica, B63, 251-256.
    [26] E. R. Reyna, A. F. Fuentes, M. Maczka, J. Hanuza, K. Boulahya, U. Amador (2006), “Facile synthesis, characterization and electrical properties of apatite-type lanthanum germinates,” Solid State Sciences, 8, 168-177.
    [27] A. Orera, M. L. Sanju’ana, E. Kendrick, V. M. Orerab and P. R. Slater (2010), “Raman spectroscopy studies of apatite-type germanate oxide ion conductors:correlation with interstitial oxide ion location and conduction,” Journal of Materials Chemistry.
    [28] E. Kendrick, M. S. Islamb and P. R. Slater (2007), “Atomic-scale mechanistic features of oxide ion conduction in apatitetype germinates,” Chemical Communications.
    [29] A. Orera, T. Baikie, E. Kendrick, J. F. Shin, S. Pramana, R. Smith, T. J. White, M. L. Sanju’ana and P. R. Slater (2010), “Apatite germanates doped with tungsten: synthesis, structure, and conductivity,” Dalton Transactions, issue 15, 2011.

    下載圖示 校內:2018-08-31公開
    校外:2020-08-31公開
    QR CODE