| 研究生: |
曾群運 Tsen, Chun-Yun |
|---|---|
| 論文名稱: |
自迴序列濾除器在降低數據化控制誤差之進階研究 GARSA Based Error Reduction of Data-Based Control Synthesis:A Further Research |
| 指導教授: |
陳正宗
Chan, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 自迴序列濾除器 、數據化控制 |
| 外文關鍵詞: | Data-Based Control, GARSA |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數據化最佳控制設計的特色是不需要知道受控系統的數學式,而是直接利用開迴路實驗數據作控制器設計,但是開迴路實驗數據的量測可能因為雜訊會造成設計的誤差,因此引進了一般性自迴序列濾除器,目地是利用其序列濾除特性,改良數據化最佳控制設計公式,降低雜訊滋生誤差。但是濾除器本身亦會造成低頻函數誤差,因此為了避免低頻函數誤差讓引進濾除器改良控制器準確性的目地造成反效果,必需根據雜訊滋生誤差和低頻函數誤差的關係,去調整濾除器在改良數據化最佳控制設計公式的參數,再與傳統降低誤差的方法作比較,評估利用改良數據化最佳控制設計公式是否較佳。
Data based controller synthesis (DBCS) can be used to design a controller directly from the open loop plant test data without explicit knowledge of the plant model. However, design error may occur when the data used contain measurement noise. In order to reduce this error, called noise-induced-error (NIE), an auto-regressive (AR) sequence annihilator was introduced into the DBCS. The use of AR sequence annihilator, however, may produce the low frequency function error (LFE) on the resulting design. Therefore, the parameters of AR sequence annihilator should be adjusted so that the low frequency function error does not exceed the noise-induced-error. A merit of the modified DBCS design is measured by comparing its result with that of the more conventional approach of noise-reduction design; for instance, averaging multiple data from repeated test.
參考文獻
[1] Chan, J. T. (1995) Control system synthesis based on plant test data, ASME
/JDSMC vol. 117, No.4, pp.484-489.
[2] 陳政雄 (2004) 數據化控制設計之效能評估(I):與傳統控制設計之比較, 國立成功大
學航空太空工程研究所碩士論文。
[3] 田家揚 (2005) 數據化最佳控制之改良:一般性自迴序列濾除器的引進與數據化設計誤
差的降低, 國立成功大學航空太空工程研究所碩士論文。
[4] Doyle, J. C. and G. Stein (1979) Robustness with observer, IEEE Transactions
on Automatic Control AC-24,pp.607-11.
[5] Gever, M. (1983) Toward a joint design of identification and control:
Perspective in the theory and its Application.
[6] Chan, J. T. (1996) Optimal output feedback regulator - A numerical synthesis
approach for input-output data, ASME/JDSMC vol.118.
[7] Chen, C. T. (1984) Linear system theory and design, Holt, Rinehart, and
Winston, New York.
[8] Franklin, G. F. and Powell, J. D. (1980) Digital Control of Dynamic Systems,
Addison-Wesley, Reading, Massachusetts.