簡易檢索 / 詳目顯示

研究生: 董國成
Tung, Kuo-Cheng
論文名稱: 有機太陽能電池之電荷萃取層研究
Studies of charge extraction layers for organic solar cells
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 165
中文關鍵詞: 有機太陽能電池富勒烯聚(3-己烷噻吩)聚乙烯亞胺
外文關鍵詞: Organic solar cell, Fullerene, Poly (3-hexylthiophene), Polyethylenimine
相關次數: 點閱:123下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討主動層上覆蓋電荷萃取層(聚乙烯亞胺, PEI)後,主動層的微結構變化及PEI的薄膜特性對有機太陽能電池的電特性之影響,聚(3-己烷噻吩) (Poly (3-hexylthiophene), P3HT)摻雜碳六十衍生物([6,6]-phenyl C61-butyric acid methyl ester, PCBM)為主動層材料,使用的溶劑為氯苯。首先比較主動層有無覆蓋PEI的電子萃取能力,並進一步改變PEI的製程參數,包括濃度、熱烤溫度、熱烤時間及氧電漿處理條件,將PEI的薄膜特性優化。接著比較不同電荷萃取層對元件特性的影響,最後將PEI應用於不同主動層系統的有機太陽能電池。我們使用吸收光譜儀、拉曼光譜儀、X光繞射儀和原子力顯微鏡對薄膜進行分析,並進一步分析其相對應太陽能電池元件的電特性。
    由薄膜的分析結果發現,主動層覆蓋PEI後,P3HT在非結晶區的結構均勻性變差,而結晶區的均勻性變好,但不影響主動層薄膜的表面形態。此外,PEI層能有效萃取主動層的電子並阻擋電洞,使元件的短路電流由5.04 mA/cm2提升至8.35 mA/cm2,與填充因子由0.28提升至0.64。在PEI的製程參數優化中,我們發現改變PEI的製作條件,不會影響主動層的微結構及表面形貌。以濃度0.01 wt%製備的PEI薄膜,具最佳化的電子萃取與電洞阻擋能力。PEI的熱烤溫度條件與其熔點(60 oC)有關,在90 oC時PEI可均勻覆蓋於主動層上,使元件效率最佳。PEI的熱烤時間為20分鐘時,PEI可以完全熔解並均勻覆蓋於主動層上,使元件效率最好。而主動層表面的氧電漿處理,我們發現隨施打氧電漿的總能量提升,主動層會產生缺陷,使元件特性變差。故選擇適當的PEI參數,可以有效提升元件效能。
    接著我們比較以PEI或Ca作為電子萃取的元件特性。覆蓋Ca的元件,其外部量子效率值最高約50 %,轉換效率僅為2.36 %。而覆蓋PEI元件,其外部量子效率可進一步提高至60 %,因此電子可以有效的被萃取出來,提升元件的短路電流,轉換效率可達3.17 %。在大氣下的元件穩定性測試,我們發現Ca作為傳輸層的元件相當容易受空氣中水氧的影響,因此覆蓋上Ca的元件不到30分鐘就已測量不到電性。而覆蓋上PEI的元件,約三個小時過後,仍保有50 %的電性,七個小時後才量不到元件電性,故其在大氣下的穩定性明顯優於覆蓋上Ca的元件。
    最後將PEI應用於主動層為P3HT:PCBM,溶劑為鄰-二氯苯(1,2-dichlorobenzene, DCB),及主動層為P3HT混摻茚-碳六十之雙加成物(Indene-C60 bisadduct, ICBA)的太陽能電池元件,同樣具有電子有效被萃取出來的效果,提升元件的短路電流,轉換效率分別達2.76 %與4.13 %。

    In this study, polyethylenimine (PEI) was used as a charge extraction layer and deposited on the active layer of poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61-butyric acid methyl ester (PCBM). The influences of the microstructures of the active layer and the properties of the PEI thin film on the photovoltaic properties of the P3HT:PCBM solar cells were investigated.

    The electron extraction efficiency of the specimen with PEI was compared with that without PEI. The process parameters of a PEI thin film, including solution concentration, baking temperature, baking time, and oxygen plasma treatment, were then modified to optimize the thin film properties. The photovoltaic performance of the device with PEI was finally compared with that of the device with calcium as an electron extraction layer.

    The analysis of the current distribution on the thin film surface shows that the electron extraction and the hole blocking in the cathode of the device with PEI were enhanced compared with that without PEI. The device with PEI exhibited improved short circuit current density (5.04 mA/cm2 → 8.35 mA/cm2), fill factor (0.28 → 0.64), and power conversion efficiency (0.70% → 3.17%).

    目錄 中文摘要 I ABSTRACT III 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 有機太陽能電池發展簡介 4 1-2.1 單層結構 (Single layer) 4 1-2.2 P-N雙層異質接面結構 (Bilayer) 5 1-2.3 P-N單層異質接面結構 (Bulk heterojunction, BHJ) 5 1-2.4 串接結構 (Tandem) 7 1-3 有機太陽能電池工作原理 9 1-4 太陽能電池之等效電路 11 1-4.1 理想等效電路模型 11 1-4.2 非理想等效電路模型 12 1-5 有機太陽能電池參數介紹 13 1-5.1 開路電壓 (Open-circuit voltage) 13 1-5.2 短路電流密度 (Short-circuit current density) 13 1-5.3 填充因子 (Fill factor) 14 1-5.4 轉換效率 (Power conversion efficiency) 14 1-6 太陽光頻譜 15 1-7 研究動機 16 第二章 實驗方法及步驟 25 2-1實驗材料 25 2-2 元件製作流程 27 2-2.1 主動層溶液配製 27 2-2.3 元件製程 28 2-2.4 實驗分析儀器 31 第三章 電荷萃取層對有機太陽能電池光電特性影響之研究 37 3-1 前言 37 3-2 電荷萃取層對元件光電特性的影響 40 3-2.1元件光電特性 40 3-2.2 紫外-可見光吸收光譜分析 42 3-2.3 拉曼光譜分析 44 3-2.4 X光繞射光譜分析 46 3-2.5 原子力顯微鏡影像分析 47 3-2.6 討論 50 3-3不同電荷萃取層參數之元件特性分析 51 3-3.1濃度特性分析 51 3-3.2熱烤溫度分析 56 3-3.3熱烤時間分析 60 3-3.4 氧電漿處理分析 64 3-3.5 討論 70 3-4 不同電荷萃取層對P3HT:PCBM高分子太陽能電池 特性影響之研究 71 3-4.1元件光電特性 71 3-4.2 外部量子效率分析 74 3-4.3 元件穩定度量測 75 3-4.4 討論 76 3-5電荷萃取層應用於不同主動層系統製作有機太陽能電池之研究 78 3-5.1 元件光電特性 78 3-5.2 薄膜表面形態表面電流分布分析 81 3-5.3 討論 85 第四章 總結與未來展望 157 4-1 結語 157 4-2 未來展望 160 參考文獻 161

    [1] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “ Solar cell efficiency tables (version 34)”, Prog. Photovolt: Res. Appl. 17, p.320, 2009.

    [2] B. J. Peet, M. Senatore, A. J. Heeger and G. C. Bazan, “The role of processing in the fabrication and optimization of plastic solar cells”, Adv. Mater. 21, p.1521, 2009.

    [3] D. J. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. W. Kim and D. Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91, p.081102 , 2007.

    [4] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles and S. E. Shsheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition Shaheen”, Appl. Phys. Lett. 92, p.033301, 2008.

    [5] S. S. Kim, S. I. Na, J. Jo, G. Tae and D. Y. Kim, “Efficient polymer solar cells fabricated by simple brush painting”, Adv. Mater. 19, p.4410, 2007.

    [6] P. Schilinsky, C. Waldauf and C. J. Brabec, “Performance analysis of printed bulk heterojunction solar cells”, Adv. Funct.Mater. 16, p.1669, 2006.

    [7] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana and C. Brabec, “High photovoltaic performance of a low-bandgap polymer”, Adv. Mater. 18, p.2931, 2006.

    [8] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, p.033306, 2008.

    [9] www.nrel.gov/ncpv/images/efficiency_chart.jpg

    [10] H.Hoppe,N.S. Sariciftci, “ Oganic solar cells: An overview ”, J.Mater. Res.,19, p.p. 1924-1945, 2004.

    [11] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells”, Adv. Funct. Mater. 11, p.15, 2011.

    [12] C. W. Tang, “2-layer organic photovoltaic cell”, Appl. Phys. Lett. 48,
    p.183, 1986.

    [13] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science , 270, p.1789, 1995.

    [14] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photo-induced electron-transfer from a conducting polymer to Buckminster-fullerene”, Science, 258, p.1474, 1992.

    [15] J. C. Hummelen, et al. “Preparation and characterization of fulleroid and methanol fullerene derivatives”, J. Org. Chem. 60, p.532, 1995.

    [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and Buckminster fullerene (as acceptor) – photoinduced electron-transfer and heterojunction devices”, Synth. Met. 59, p.333, 1993.

    [17] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct.Mater.13, p.85, 2003.

    [18] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials 4, p.864, 2005.

    [19] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, p.497, 2007.

    [20] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%”, Adv. Mater. 22, p.135, 2010.

    [21] Z. He, C. Zhong, X. Huang, W. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells”, Adv. Mater. 23, p.4636, 2011.

    [22] G. Dennler, H. –J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N.S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells ”, Appl. Phys. Lett.,3 , 89, p.p. 073502, 2006.

    [23] J.Y. Kim, K. Lee, N. E. Coates, D. Moses, T. –Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Process”, Science, 13, p.p. 222-225, 2007.

    [24] M. Pope and C. E. Swenberg, “Electronic processes in organic crystals and polymers 2nd edn.” Oxford univ., 1999.

    [25] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic”, Nature 428, p.911, 2004.

    [26] Dipl. Ing. Klaus Petritsch, “Organic solar cell architectures”, PhD Thesis, 2000.

    [27] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, “Design rules for donors in bulk heterojunction solar cells-towards 10% energy conversion efficiency”, Adv. Mater., 18, p.789, 2006.

    [28] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells”, J. Appl. Phys. 94, p.6849, 2003.

    [29] K. Sim, Y. Choi, H. Kim, S. Cho, S. C. Yoon and S. Pyo, “Soluble pentacene thin-film transisitor using a high solvent and heat resistive polymeric dielectric with low-temperature processability and its long-term stability ”, Org. Electron. 10, p.506~510, 2009.

    [30] M. Al-Ibrahim, H. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene”, Energy Mater., 85, p.13-20, 2005.

    [31] X. Bulliard , S. Ihn , S. Yun , Y. Kim , D. Choi , J. Choi , M. Kim , M. Sim , J. Park , W. Choi , K. Cho , Adv. Funct. Mater., 20, 4381, 2010.

    [32] Y. Sun , J. Seo , C. Takacs , J. Seifter , A. Heeger , Adv. Mater., 23, 1679, 2011.

    [33] F. Krebs , T. Tromholt , M. Jorgensen , Nanoscale, 2, 873 , 2010.

    [34] H. Schmidt , K. Zilberberg , S. Schmale , H. Flugge , T. Riedl ,W. Kowalsky , Appl. Phys. Lett., 96, 243305, 2010.

    [35] Z. Tang, L. M. Andersson, Z. George, K. Vandewal, K. Tvingstedt, P. Heriksson, R. Kroon, M. R. Andersson, O. Inganas, Adv. Mater., 24, 554, 2012.

    [36] S. Yao, P. Li, J. Bian, Q. Dong, C. Im and W. Tian, “Influence of a polyelectrolyte based-fluorene interfacial layer on the performance of a polymer solar cell”, J. Mater. Chem. A, 1, 11443-11450, 2013.

    [37] H. Kang , S. Hong , J. Lee , and K. Lee “ Electrostatically Self-Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells”, Adv. Mater., 24, 3005–3009, 2012.

    [38] B.Kippelen, J. L. Bredas, “Organic photovoltaics”, Energy Environ. Sci., 2, 251-261, 2009.

    [39] F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou and F. C. Tang, “Importance of disordered polymer segments to microstructure dependent photovoltaic properties of polymer:fullerene bulk heterojunction solar cells”, J. Phys. Chem. C 115, p.15057, 2011.

    [40] F. C. Spano, “Absorption in region-regular poly(3-hexyl)thiophene thin films: Fermi resonances interband couplind and disorder”, J. Chem.Phys., 325 ,p.22, 2006.

    [41] F. C. Spano, “Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexyl)thiophene thin films”, J. Chem. Phys., p.122, 2005.

    [42] M. Baibarac, M Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of of poly(3-hexyl)thiophene in oxidized and unoxidized states”, J. Raman. Spectrosc.29, p.825, 1998.

    [43] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett., 92, p.251912, 2008.

    [44] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funtc. Mater.,15, p.1193, 2005.

    [45] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”, Nat. Mater., 5, 197, 2006.

    下載圖示 校內:2019-08-08公開
    校外:2019-08-08公開
    QR CODE