| 研究生: |
董國成 Tung, Kuo-Cheng |
|---|---|
| 論文名稱: |
有機太陽能電池之電荷萃取層研究 Studies of charge extraction layers for organic solar cells |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 有機太陽能電池 、富勒烯 、聚(3-己烷噻吩) 、聚乙烯亞胺 |
| 外文關鍵詞: | Organic solar cell, Fullerene, Poly (3-hexylthiophene), Polyethylenimine |
| 相關次數: | 點閱:123 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討主動層上覆蓋電荷萃取層(聚乙烯亞胺, PEI)後,主動層的微結構變化及PEI的薄膜特性對有機太陽能電池的電特性之影響,聚(3-己烷噻吩) (Poly (3-hexylthiophene), P3HT)摻雜碳六十衍生物([6,6]-phenyl C61-butyric acid methyl ester, PCBM)為主動層材料,使用的溶劑為氯苯。首先比較主動層有無覆蓋PEI的電子萃取能力,並進一步改變PEI的製程參數,包括濃度、熱烤溫度、熱烤時間及氧電漿處理條件,將PEI的薄膜特性優化。接著比較不同電荷萃取層對元件特性的影響,最後將PEI應用於不同主動層系統的有機太陽能電池。我們使用吸收光譜儀、拉曼光譜儀、X光繞射儀和原子力顯微鏡對薄膜進行分析,並進一步分析其相對應太陽能電池元件的電特性。
由薄膜的分析結果發現,主動層覆蓋PEI後,P3HT在非結晶區的結構均勻性變差,而結晶區的均勻性變好,但不影響主動層薄膜的表面形態。此外,PEI層能有效萃取主動層的電子並阻擋電洞,使元件的短路電流由5.04 mA/cm2提升至8.35 mA/cm2,與填充因子由0.28提升至0.64。在PEI的製程參數優化中,我們發現改變PEI的製作條件,不會影響主動層的微結構及表面形貌。以濃度0.01 wt%製備的PEI薄膜,具最佳化的電子萃取與電洞阻擋能力。PEI的熱烤溫度條件與其熔點(60 oC)有關,在90 oC時PEI可均勻覆蓋於主動層上,使元件效率最佳。PEI的熱烤時間為20分鐘時,PEI可以完全熔解並均勻覆蓋於主動層上,使元件效率最好。而主動層表面的氧電漿處理,我們發現隨施打氧電漿的總能量提升,主動層會產生缺陷,使元件特性變差。故選擇適當的PEI參數,可以有效提升元件效能。
接著我們比較以PEI或Ca作為電子萃取的元件特性。覆蓋Ca的元件,其外部量子效率值最高約50 %,轉換效率僅為2.36 %。而覆蓋PEI元件,其外部量子效率可進一步提高至60 %,因此電子可以有效的被萃取出來,提升元件的短路電流,轉換效率可達3.17 %。在大氣下的元件穩定性測試,我們發現Ca作為傳輸層的元件相當容易受空氣中水氧的影響,因此覆蓋上Ca的元件不到30分鐘就已測量不到電性。而覆蓋上PEI的元件,約三個小時過後,仍保有50 %的電性,七個小時後才量不到元件電性,故其在大氣下的穩定性明顯優於覆蓋上Ca的元件。
最後將PEI應用於主動層為P3HT:PCBM,溶劑為鄰-二氯苯(1,2-dichlorobenzene, DCB),及主動層為P3HT混摻茚-碳六十之雙加成物(Indene-C60 bisadduct, ICBA)的太陽能電池元件,同樣具有電子有效被萃取出來的效果,提升元件的短路電流,轉換效率分別達2.76 %與4.13 %。
In this study, polyethylenimine (PEI) was used as a charge extraction layer and deposited on the active layer of poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61-butyric acid methyl ester (PCBM). The influences of the microstructures of the active layer and the properties of the PEI thin film on the photovoltaic properties of the P3HT:PCBM solar cells were investigated.
The electron extraction efficiency of the specimen with PEI was compared with that without PEI. The process parameters of a PEI thin film, including solution concentration, baking temperature, baking time, and oxygen plasma treatment, were then modified to optimize the thin film properties. The photovoltaic performance of the device with PEI was finally compared with that of the device with calcium as an electron extraction layer.
The analysis of the current distribution on the thin film surface shows that the electron extraction and the hole blocking in the cathode of the device with PEI were enhanced compared with that without PEI. The device with PEI exhibited improved short circuit current density (5.04 mA/cm2 → 8.35 mA/cm2), fill factor (0.28 → 0.64), and power conversion efficiency (0.70% → 3.17%).
[1] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “ Solar cell efficiency tables (version 34)”, Prog. Photovolt: Res. Appl. 17, p.320, 2009.
[2] B. J. Peet, M. Senatore, A. J. Heeger and G. C. Bazan, “The role of processing in the fabrication and optimization of plastic solar cells”, Adv. Mater. 21, p.1521, 2009.
[3] D. J. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. W. Kim and D. Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91, p.081102 , 2007.
[4] R. Green, A. Morfa, A. J. Ferguson, N. Kopidakis, G. Rumbles and S. E. Shsheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition Shaheen”, Appl. Phys. Lett. 92, p.033301, 2008.
[5] S. S. Kim, S. I. Na, J. Jo, G. Tae and D. Y. Kim, “Efficient polymer solar cells fabricated by simple brush painting”, Adv. Mater. 19, p.4410, 2007.
[6] P. Schilinsky, C. Waldauf and C. J. Brabec, “Performance analysis of printed bulk heterojunction solar cells”, Adv. Funct.Mater. 16, p.1669, 2006.
[7] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana and C. Brabec, “High photovoltaic performance of a low-bandgap polymer”, Adv. Mater. 18, p.2931, 2006.
[8] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, p.033306, 2008.
[9] www.nrel.gov/ncpv/images/efficiency_chart.jpg
[10] H.Hoppe,N.S. Sariciftci, “ Oganic solar cells: An overview ”, J.Mater. Res.,19, p.p. 1924-1945, 2004.
[11] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, “Plastic solar cells”, Adv. Funct. Mater. 11, p.15, 2011.
[12] C. W. Tang, “2-layer organic photovoltaic cell”, Appl. Phys. Lett. 48,
p.183, 1986.
[13] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science , 270, p.1789, 1995.
[14] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photo-induced electron-transfer from a conducting polymer to Buckminster-fullerene”, Science, 258, p.1474, 1992.
[15] J. C. Hummelen, et al. “Preparation and characterization of fulleroid and methanol fullerene derivatives”, J. Org. Chem. 60, p.532, 1995.
[16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Semiconducting polymers (as donors) and Buckminster fullerene (as acceptor) – photoinduced electron-transfer and heterojunction devices”, Synth. Met. 59, p.333, 1993.
[17] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct.Mater.13, p.85, 2003.
[18] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials 4, p.864, 2005.
[19] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 6, p.497, 2007.
[20] B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%”, Adv. Mater. 22, p.135, 2010.
[21] Z. He, C. Zhong, X. Huang, W. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells”, Adv. Mater. 23, p.4636, 2011.
[22] G. Dennler, H. –J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N.S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells ”, Appl. Phys. Lett.,3 , 89, p.p. 073502, 2006.
[23] J.Y. Kim, K. Lee, N. E. Coates, D. Moses, T. –Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Process”, Science, 13, p.p. 222-225, 2007.
[24] M. Pope and C. E. Swenberg, “Electronic processes in organic crystals and polymers 2nd edn.” Oxford univ., 1999.
[25] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic”, Nature 428, p.911, 2004.
[26] Dipl. Ing. Klaus Petritsch, “Organic solar cell architectures”, PhD Thesis, 2000.
[27] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, “Design rules for donors in bulk heterojunction solar cells-towards 10% energy conversion efficiency”, Adv. Mater., 18, p.789, 2006.
[28] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells”, J. Appl. Phys. 94, p.6849, 2003.
[29] K. Sim, Y. Choi, H. Kim, S. Cho, S. C. Yoon and S. Pyo, “Soluble pentacene thin-film transisitor using a high solvent and heat resistive polymeric dielectric with low-temperature processability and its long-term stability ”, Org. Electron. 10, p.506~510, 2009.
[30] M. Al-Ibrahim, H. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss “Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene”, Energy Mater., 85, p.13-20, 2005.
[31] X. Bulliard , S. Ihn , S. Yun , Y. Kim , D. Choi , J. Choi , M. Kim , M. Sim , J. Park , W. Choi , K. Cho , Adv. Funct. Mater., 20, 4381, 2010.
[32] Y. Sun , J. Seo , C. Takacs , J. Seifter , A. Heeger , Adv. Mater., 23, 1679, 2011.
[33] F. Krebs , T. Tromholt , M. Jorgensen , Nanoscale, 2, 873 , 2010.
[34] H. Schmidt , K. Zilberberg , S. Schmale , H. Flugge , T. Riedl ,W. Kowalsky , Appl. Phys. Lett., 96, 243305, 2010.
[35] Z. Tang, L. M. Andersson, Z. George, K. Vandewal, K. Tvingstedt, P. Heriksson, R. Kroon, M. R. Andersson, O. Inganas, Adv. Mater., 24, 554, 2012.
[36] S. Yao, P. Li, J. Bian, Q. Dong, C. Im and W. Tian, “Influence of a polyelectrolyte based-fluorene interfacial layer on the performance of a polymer solar cell”, J. Mater. Chem. A, 1, 11443-11450, 2013.
[37] H. Kang , S. Hong , J. Lee , and K. Lee “ Electrostatically Self-Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells”, Adv. Mater., 24, 3005–3009, 2012.
[38] B.Kippelen, J. L. Bredas, “Organic photovoltaics”, Energy Environ. Sci., 2, 251-261, 2009.
[39] F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou and F. C. Tang, “Importance of disordered polymer segments to microstructure dependent photovoltaic properties of polymer:fullerene bulk heterojunction solar cells”, J. Phys. Chem. C 115, p.15057, 2011.
[40] F. C. Spano, “Absorption in region-regular poly(3-hexyl)thiophene thin films: Fermi resonances interband couplind and disorder”, J. Chem.Phys., 325 ,p.22, 2006.
[41] F. C. Spano, “Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexyl)thiophene thin films”, J. Chem. Phys., p.122, 2005.
[42] M. Baibarac, M Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of of poly(3-hexyl)thiophene in oxidized and unoxidized states”, J. Raman. Spectrosc.29, p.825, 1998.
[43] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett., 92, p.251912, 2008.
[44] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funtc. Mater.,15, p.1193, 2005.
[45] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells”, Nat. Mater., 5, 197, 2006.