| 研究生: |
賴彥仲 Lai, Yen-Chung |
|---|---|
| 論文名稱: |
針對登革病毒非結構性蛋白1及巨噬細胞移動抑制因子發展抗登革病毒感染的策略 Development of a strategy against dengue virus infection by targeting dengue virus nonstructural protein 1 and macrophage migration inhibitory factor |
| 指導教授: |
葉才明
Yeh, Trai-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 自噬作用 、登革病毒 、巨噬細胞移動抑制因子 、美諾四環素(minocycline) 、非結構性蛋白1 、單株抗體33D2 、疫苗 |
| 外文關鍵詞: | autophagy, dengue virus, MIF, minocycline, NS1, mAb 33D2, vaccine |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒感染是病媒蚊傳播的病毒感染中最盛行的疾病,雖然目前已有一種經食品藥物管理局核准的登革疫苗,但其疫苗效力及安全性仍有爭議而且臨床上也還沒有有效的抗病毒藥物,這些需求都有待進一步研究解決。對於藥物開發部分,目前主要針對宿主調控或是病毒因子發展不同策略。由於登革病毒感染其疾病嚴重程度和血液中的促發炎性細胞激素(巨噬細胞移動抑制因子)有關,而且巨噬細胞移動抑制因子能夠促進細胞自噬,而過去研究顯示登革病毒複製需要誘導細胞的細胞自噬,因此我們假設抑制巨噬細胞移動抑制因子所誘導的自噬作用能干擾登革病毒複製。我們首先顯示登革病毒感染能誘導巨噬細胞移動抑制因子從人類肝癌細胞中釋放以及促使自噬產生。另外以shRNA抑制細胞內生性巨噬細胞移動抑制因子表現或是藉由巨噬細胞移動抑制因子抑制劑阻絕其活性皆能降低登革病毒複製以及細胞自噬的形成。我們也進一步以抗生素(美諾四環素, minocycline)老藥新用在體外以及體內試驗,發現它能藉由阻斷登革病毒誘導的巨噬細胞移動抑制因子釋放以及細胞自噬而降低登革病毒感染。另一方面,登革病毒非結構性蛋白1被發現在登革病人血清中是一個會造成血漿滲漏以及凝血病變的重要病毒毒素。針對登革病毒非結構性蛋白1,我們找到一株非結構性蛋白1翅膀區域專一的單株抗體33D2能識別所有四型登革病毒非結構性蛋白1並且不會交叉辨識到人類宿主蛋白。我們根據單株抗體33D2的抗原決定位移除了在翅膀區域紊亂環上的交叉反應胺基酸,並且以此修飾後的非結構性蛋白1翅膀區域胜肽免疫小鼠。我們發現這些對抗修飾後非結構性蛋白1翅膀區域的抗體,以及單株抗體33D2在體內以及體外試驗中都能減緩登革病毒感染以及非結構性蛋白1造成的血管通透性增加。此外,以修飾後的非結構性蛋白1翅膀區域胜肽主動免疫以及被動給予小鼠單株抗體33D2皆能減輕登革病毒造成的凝血病變、出血以及死亡率。總結,這些結果指出巨噬細胞移動抑制因子以及非結構性蛋白1都能作為有潛力的治療性標靶,並且以非結構性蛋白1為基礎的疫苗很可能可以成為有效的次代登革疫苗
Dengue virus (DENV) infection is the most prevalent mosquito-borne viral infection. Although there is a Food and Drug Administration (FDA)-approved dengue vaccine, the efficacy and safety of the vaccine are still arguable. In addition, there is still no effective anti-viral drug. Therefore, the development of effective drugs and vaccines against DENV infection is of great importance. Different strategies targeting either host regulation or viral factors have been investigated for therapeutic potential against DENV. Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, was increased in sera from DENV patients which correlated with disease severity. Previous studies have shown that autophagy is required for DENV replication. Since MIF is able to induce autophagy, we hypothesized that inhibition of MIF-induced autophagy can limit DENV replication. We first showed that DENV infection induced MIF secretion and autophagic flux in human hepatoma cell line (HuH-7 cells). Suppression of endogenous MIF by short hairpin RNA or inhibition of MIF activity by MIF inhibitors can attenuate DENV infection and autophagy. Furthermore, minocycline, a tetracycline derivative antibiotic, could attenuate DENV infection by blocking DENV-induced MIF secretion and autophagy both in vitro and in vivo. On the other hand, DENV nonstructural protein 1 (NS1) which can be found in sera of DENV patients, is believed to act as a critical viral toxin contributing to vascular leakage and coagulopathy. Based on DENV NS1 structural analysis, we identified a NS1 wing domain (WD)-specific monoclonal antibody (mAb) 33D2 which can recognize all four serotypes of DENV NS1. According to the epitope recognized by mAb 33D2, we designed a synthetic peptide which represents the modified NS1-WD disordered loop to immunize mice. We found that antibodies (Abs) against modified NS1-WD and mAb 33D2 can attenuate DENV infection as well as NS1-induced endothelial permeability both in vitro and in vivo. In addition, both active immunization with modified NS1-WD peptide and passive transfer of mAb 33D2 into mice can alleviate DENV-induced coagulopathy, hemorrhage and mortality. Taken together, these results indicate that both MIF and NS1 are potential therapeutic targets against DENV infection and that NS1-based vaccine development may be an alternative approach towards a next generation dengue vaccine.
World Health Organization. (2009) Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva.
Ackermann, M., & Padmanabhan, R. (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem, 276(43), 39926-39937.
Ahammad, F., Tengku Abd Rashid, T. R., Mohamed, M., Tanbin, S., & Ahmad Fuad, F. A. (2019). Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms, 7(9).
Ahlgren, C., Oden, A., Bergstrom, T., & Lycke, J. (2012). Serum and CSF measles antibody levels increase over time in patients with multiple sclerosis or clinically isolated syndrome. J Neuroimmunol, 247(1-2), 70-74.
Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., et al. (2014). Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 343(6173), 881-885.
Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol, 4(7), 499-511.
Alampour-Rajabi, S., El Bounkari, O., Rot, A., Muller-Newen, G., Bachelerie, F., Gawaz, M., et al. (2015). MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J., 29(11), 4497-4511.
Alayli, F., & Scholle, F. (2016). Dengue virus NS1 enhances viral replication and proinflammatory cytokine production in human dendritic cells. Virology, 496, 227-236.
Alcon-LePoder, S., Drouet, M. T., Roux, P., Frenkiel, M. P., Arborio, M., et al. (2005a). The secreted form of dengue virus nonstructural protein NS1 is endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity. J. Virol., 79(17), 11403-11411.
Alcon, S., Talarmin, A., Debruyne, M., Falconar, A., Deubel, V., et al. (2002). Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol, 40(2), 376-381.
Arjona, A., Foellmer, H. G., Town, T., Leng, L., McDonald, C., et al. (2007). Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest, 117(10), 3059-3066.
Arndt, U., Wennemuth, G., Barth, P., Nain, M., Al-Abed, Y., Meinhardt, A., et al. (2002). Release of macrophage migration inhibitory factor and CXCL8/interleukin-8 from lung epithelial cells rendered necrotic by influenza A virus infection. J. Virol, 76(18), 9298-9306.
Arredondo-Garcia, J. L., Hadinegoro, S. R., Reynales, H., Chua, M. N., Medina, D. M. R., et al. (2018). Four-year safety follow-up of the tetravalent dengue vaccine efficacy randomized controlled trials in Asia and Latin America. Clin Microbiol Infec, 24(7), 755-763.
Assuncao-Miranda, I., Amaral, F. A., Bozza, F. A., Fagundes, C. T., Sousa, L. P., et al. (2010). Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J., 24(1), 218-228.
Assuncao-Miranda, I., Bozza, M. T., & Da Poian, A. T. (2010). Proinflammatory Response Resulting From Sindbis Virus Infection of Human Macrophages: Implications for the Pathogenesis of Viral Arthritis. J. Med. Virol., 82(1), 164-174.
Ataie-Kachoie, P., Badar, S., Morris, D. L., & Pourgholami, M. H. (2013). Minocycline Targets the NF-kappa B Nexus through Suppression of TGF-beta 1-TAK1-I kappa B Signaling in Ovarian Cancer. Mol Cancer Res, 11(10), 1279-1291.
Avirutnan, P., Fuchs, A., Hauhart, R. E., Somnuke, P., Youn, S., et al. (2010). Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med, 207(4), 793-806.
Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., et al. (2011). Binding of Flavivirus Nonstructural Protein NS1 to C4b Binding Protein Modulates Complement Activation. J. Immunol, 187(1), 424-433.
Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., et al. (2006). Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein NS1 and complement. J Infect Dis, 193(8), 1078-1088.
Avirutnan, P., Zhang, L., Punyadee, N., Manuyakorn, A., Puttikhunt, C., et al. (2007a). Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog, 3(11), 1798-1812.
Azeredo, E. L., De Oliveira-Pinto, L. M., Zagne, S. M., Cerqueira, D. I., Nogueira, R. M., et al. (2006). NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin Exp Immunol, 143(2), 345-356.
Barzilai, O., Ram, M., & Shoenfeld, Y. (2007). Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol, 19(6), 636-643.
Baugh, J. A., Gantier, M., Li, L., Byrne, A., Buckley, A., & Donnelly, S. C. (2006). Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochem Biophys Res Commun, 347(4), 895-903.
Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., Glasner, D. R., Hopkins, K., et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med, 7(304), 304ra141.
Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., et al. (2009). Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Mol Cell Bio, 29(10), 2570-2581.
Bernhagen, J., Calandra, T., Mitchell, R. A., Martin, S. B., Tracey, K. J., et al. (1993). Mif Is a Pituitary-Derived Cytokine That Potentiates Lethal Endotoxemia. Nature, 365(6448), 756-759.
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507.
Bifulco, C., McDaniel, K., Leng, L., & Bucala, R. (2008). Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des, 14(36), 3790-3801.
Brilha, S., Ong, C. W. M., Weksler, B., Romero, N., Couraud, P. O., & Friedland, J. S. (2018). Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis (vol 7, 16031, 2017). Sci Rep, 8.
Brock, S. E., Rendon, B. E., Xin, D., Yaddanapudi, K., & Mitchell, R. A. (2014). MIF Family Members Cooperatively Inhibit p53 Expression and Activity. PLoS ONE, 9(6).
Brown, W. C., Akey, D. L., Konwerski, J. R., Tarrasch, J. T., Skiniotis, G., et al. (2016). Extended surface for membrane association in Zika virus NS1 structure. Nat Struct Mol Biol, 23(9), 865-867.
Burger-Kentischer, A., Goebel, H., Seiler, R., Fraedrich, G., Schaefer, H. E., et al. (2002). Expression of macrophage migration inhibitory factor in different stages of human atherosclerosis. Circulation, 105(13), 1561-1566.
Byrd, C. M., Dai, D. C., Grosenbach, D. W., Berhanu, A., Jones, K. F., et al. (2013). A Novel Inhibitor of Dengue Virus Replication That Targets the Capsid Protein. Antimicrob Agents Ch, 57(1), 15-25.
Castilla, V., Piccini, L. E., & Damonte, E. B. (2015). Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virol, 10(5), 625-645.
Chan, K. W. K., Watanabe, S., Jin, J. Y., Pompon, J., Teng, D., et al. (2019). A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Sci Transl Med, 11(498).
Chang, M. H., Chen, C. J., Lai, M. S., Hsu, H. M., Wu, T. C., et al. (1997). Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med, 336(26), 1855-1859.
Chao, C. H., Wu, W. C., Lai, Y. C., Tsai, P. J., Perng, G. C., et al. (2019). Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog., 15(4), e1007625.
Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J. Virol., 81(11), 5518-5526.
Chen, H. H., Chen, C. C., Lin, Y. S., Chang, P. C., Lu, Z. Y., et al. (2017). AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78. Antiviral Res., 142, 158-168.
Chen, H. R., Chao, C. H., Liu, C. C., Ho, T. S., Tsai, H. P., et al. (2018). Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog., 14(4).
Chen, H. R., Chuang, Y. C., Chao, C. H., & Yeh, T. M. (2015). Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biol Open, 4(2), 244-252.
Chen, H. R., Chuang, Y. C., Lin, Y. S., Liu, H. S., Liu, C. C., et al. (2016). Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis, 10(7), e0004828.
Chen, L. C., Lei, H. Y., Liu, C. C., Shiesh, S. C., Chen, S. H., et al. (2006). Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg, 74(1), 142-147.
Chen, L. C., Shyu, H. W., Lin, H. M., Lei, H. Y., Lin, Y. S., et al. (2009). Dengue virus induces thrombomodulin expression in human endothelial cells and monocytes in vitro. J. Infect., 58(5), 368-374.
Chen, S. T., Lin, Y. L., Huang, M. T., Wu, M. F., Cheng, S. C., et al. (2008a). CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453(7195), 672-U612.
Cheng, H. J., Lei, H. Y., Lin, C. F., Luo, Y. H., Wan, S. W., et al. (2009). Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol Immunol, 47(2-3), 398-406.
Cheng, Y. L., Lin, Y. S., Chen, C. L., Tsai, T. T., Tsai, C. C., et al. (2016). Activation of Nrf2 by the dengue virus causes an increase in CLEC5A, which enhances TNF-alpha production by mononuclear phagocytes. Sci Rep, 6, 32000.
Choi, Y., Bowman, J. W., & Jung, J. U. (2018). Autophagy during viral infection - a double-edged sword. Nat Rev Microb, 16(6), 340-353.
Chousterman, B. G., Swirski, F. K., & Weber, G. F. (2017). Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol, 39(5), 517-528.
Chuang, Y. C., Chen, H. R., & Yeh, T. M. (2015). Pathogenic roles of macrophage migration inhibitory factor during dengue virus infection. Mediators Inflamm, 2015, 547094.
Chuang, Y. C., Lei, H. Y., Liu, H. S., Lin, Y. S., Fu, T. F., et al. (2011). Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine, 54(2), 222-231.
Chuang, Y. C., Lin, J., Lin, Y. S., Wang, S., & Yeh, T. M. (2016). Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J. Immunol., 196(3), 1218-1226.
Chuang, Y. C., Su, W. H., Lei, H. Y., Lin, Y. S., Liu, H. S., et al. (2012). Macrophage Migration Inhibitory Factor Induces Autophagy via Reactive Oxygen Species Generation. PLoS One, 7(5).
Chung, K. M., Nybakken, G. E., Thompson, B. S., Engle, M. J., Marri, A., et al. (2006). Antibodies against West Nile virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J Virol, 80(3), 1340-1351.
Chung, K. M., Thompson, B. S., Fremont, D. H., & Diamond, M. S. (2007). Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile virus-infected cells. J Virol, 81(17), 9551-9555.
Collins, A. M. (2016). IgG subclass co-expression brings harmony to the quartet model of murine IgG function. Immunol Cell Biol, 94(10), 949-954.
Conde, J. N., da Silva, E. M., Allonso, D., Coelho, D. R., Andrade, I. D., et al. (2016). Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins. J Virol, 90(21), 9570-9581.
Costa, V. V., Fagundes, C. T., Souza, D. G., & Teixeira, M. M. (2013). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol, 182(6), 1950-1961.
Dambacher, J., Staudinger, T., Seiderer, J., Sisic, Z., Schnitzler, F., et al. (2007). Macrophage migration inhibitory factor (MIF) -173G/C promoter polymorphism influences upper gastrointestinal tract involvement and disease activity in patients with Crohn's disease. Inflamm. Bowel Dis., 13(1), 71-82.
Datan, E., Roy, S. G., Germain, G., Zali, N., McLean, J. E., et al. (2016). Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis, 7.
David, J. R. (1966). Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc. Natl. Acad. Sci. U. S. A., 56(1), 72-77.
de Chassey, B., Meyniel-Schicklin, L., Vonderscher, J., Andre, P., & Lotteau, V. (2014). Virus-host interactomics: new insights and opportunities for antiviral drug discovery. Genome Medicine, 6.
De La Guardia, C., & Lleonart, R. (2014). Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors. BioMed Res. Int.
de Souza, G. F., Muraro, S. P., Santos, L. D., Monteiro, A. P. T., da Silva, A. G., et al. (2019). Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res, 68(6), 481-491.
de Souza, L. J., de Azevedo, J., Kohler, L. I. A., Barros, L. F., Lima, M. A., et al. (2017). Evidence of dengue virus replication in a non-traumatic spleen rupture case. Arch Virol, 162(11), 3535-3539.
Dejnirattisai, W., Jumnainsong, A., Onsirisakul, N., Fitton, P., Vasanawathana, S., et al. (2010). Cross-reacting antibodies enhance dengue virus infection in humans. Science, 328(5979), 745-748.
Dejnirattisai, W., Wongwiwat, W., Supasa, S., Zhang, X. K., Dai, X. H., et al. (2015). A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat Immunol, 16(2), 170-177.
Delaloye, J., De Bruin, I. J. A., Darling, K. E. A., Reymond, M. K., Sweep, F. C. G. J., et al. (2012). Increased macrophage migration inhibitory factor (MIF) plasma levels in acute HIV-1 infection. Cytokine, 60(2), 338-340.
Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol, 13(10), 722-737.
Desjarlais, M., Pratt, J., Lounis, A., Mounier, C., Haidara, K., et al. (2014). Tetracycline derivative minocycline inhibits autophagy and inflammation in concanavalin-a-activated human hepatoma cells. Gene Regul. Syst. Bio., 8, 63-73.
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., & Sousa, C. R. E. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303(5663), 1529-1531.
Dinkins, C., Pilli, M., & Kehrl, J. H. (2015). Roles of autophagy in HIV infection. Immunol Cell Biol, 93(1), 11-17.
Ebensen, T., Delandre, S., Prochnow, B., Guzman, C. A., & Schulze, K. (2019). The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Front Cell Infect Mi, 9.
Egloff, M. P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., et al. (2007). Structural and functional analysis of methylation and 5 '-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372(3), 723-736.
Eibl, M. M., & Sitko, C. (1975). MIF production of lymphocytes from patients with rheumatoid arthritis with antigen-antibody complexes. Ann. Rheum. Dis., 34(2), 117-121.
Falconar, A. K. (2007). Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin. Vaccine Immunol., 14(5), 493-504.
Fibriansah, G., Ibarra, K. D., Ng, T. S., Smith, S. A., Tan, J. L., et al. (2015). Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science, 349(6243), 88-91.
Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ, 22(3), 377-388.
Fingerle-Rowson, G., Kaleswarapu, D. R., Schlander, C., Kabgani, N., Brocks, T., et al. (2009). A tautomerase-null macrophage migration-inhibitory factor (MIF) gene knock-in mouse model reveals that protein interactions and not enzymatic activity mediate MIF-dependent growth regulation. Mol Cell Biol, 29(7), 1922-1932.
Flieger, O., Engling, A., Bucala, R., Lue, H., Nickel, W., et al. (2003a). Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. FEBS Lett, 551(1-3), 78-86.
Flieger, O., Engling, A., Bucala, R., Lue, H. Q., Nickel, W., et al. (2003b). Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. Febs Letters, 551(1-3), 78-86.
Flipse, J., Wilschut, J., & Smit, J. M. (2013). Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic, 14(1), 25-35.
Fontaine, K. A., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2015). Dengue Virus Induces and Requires Glycolysis for Optimal Replication. J Virol, 89(4), 2358-2366.
Frakolaki, E., Kaimou, P., Moraiti, M., Kalliampakou, K. I., Karampetsou, K., Dotsika, E., et al. (2018). The Role of Tissue Oxygen Tension in Dengue Virus Replication. Cells, 7(12).
Fujinami, R. S., von Herrath, M. G., Christen, U., & Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev, 19(1), 80-94.
Fung, O. S., & Liu, D. X. (2019). The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology, 533, 34-44.
Gannage, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., et al. (2009). Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe, 6(4), 367-380.
Gardella, S., Andrei, C., Ferrera, D., Lotti, L. V., Torrisi, M. R., et al. (2002). The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. Embo Reports, 3(10), 995-1001.
Garrido-Mesa, N., Zarzuelo, A., & Galvez, J. (2013). Minocycline: far beyond an antibiotic. Br J Pharmacol, 169(2), 337-352.
Glasner, D. R., Ratnasiri, K., Puerta-Guardo, H., Espinosa, D. A., Beatty, P. R., et al. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog., 13(11), e1006673.
Goncalves, A. J. S., Oliveira, E. R. A., Costa, S. M., Paes, M. V., Silva, J. F. A., et al. (2015). Cooperation between CD4+T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen. Plos Neglect Trop D, 9(12).
Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 11(3), 480-496.
Gubler, D. J., & Clark, G. G. (1995). Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis, 1(2), 55-57.
Gupta, Y., Pasupuleti, V., Du, W. N., & Welford, S. M. (2016). Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One, 11(1).
Gutsche, I., Coulibaly, F., Voss, J. E., Salmon, J., d'Alayer, J., et al. (2011). Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc. Natl. Acad. Sci. U. S. A., 108(19), 8003-8008.
Guy, B., & Jackson, N. (2016). Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat. Rev. Microb, 14(1), 45-54.
Hadinegoro, S. R., Arredondo-Garcia, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T., et al. (2015). Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. New Engl J Med, 373(13), 1195-1206.
Halstead, S. B. (2017). Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine, 35(47), 6355-6358.
Halstead, S. B. (2018a). Safety issues from a Phase 3 clinical trial of a live-attenuated chimeric yellow fever tetravalent dengue vaccine. Hum Vacc Immunother, 14(9), 2158-2162.
Halstead, S. B. (2018b). Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? There Is Only One True Winner. Csh Perspect Biol, 10(6).
Halstead, S. B., Mahalingam, S., Marovich, M. A., Ubol, S., & Mosser, D. M. (2010). Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis, 10(10), 712-722.
Halstead, S. B., & O'Rourke, E. J. (1977). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med, 146(1), 201-217.
Heaton, N. S., & Randall, G. (2011). Dengue virus and autophagy. Viruses, 3(8), 1332-1341.
Heaton, N. S., & Randall, G. (2010). Dengue Virus-Induced Autophagy Regulates Lipid Metabolism. Cell Host Microbe, 8(5), 422-432.
Heilman, J. M., De Wolff, J., Beards, G. M., & Basden, B. J. (2014). Dengue fever: a Wikipedia clinical review. Open Med, 8(4), e105-115.
Henchal, E. A., Henchal, L. S., & Schlesinger, J. J. (1988). Synergistic Interactions of Anti-Ns1 Monoclonal-Antibodies Protect Passively Immunized Mice from Lethal Challenge with Dengue-2 Virus. J. Gen. Virol, 69, 2101-2107.
Henriques, H. R., Rampazo, E. V., Goncalves, A. J., Vicentin, E. C., Amorim, J. H., et al. (2013). Targeting the non-structural protein 1 from dengue virus to a dendritic cell population confers protective immunity to lethal virus challenge. PLoS Negl Trop Dis, 7(7), e2330.
Heras-Sandoval, D., Perez-Rojas, J. M., Hernandez-Damian, J., & Pedraza-Chaverri, J. (2014). The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal, 26(12), 2694-2701.
Herrero, L. J., Nelson, M., Srikiatkhachorn, A., Gu, R., Anantapreecha, S., et al. (2011). Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc. Natl. Acad. Sci. U. S. A., 108(29), 12048-12053.
Hewitt, G., & Korolchuk, V. I. (2017). Repair, Reuse, Recycle: The Expanding Role of Autophagy in Genome Maintenance. Trends Cell Biol, 27(5), 340-351.
Hidari, K. I., & Suzuki, T. (2011). Dengue virus receptor. Trop Med Health, 39(4 Suppl), 37-43.
Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., & Young, P. R. (2000). Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J, 14(11), 1603-1610.
Jankauskas, S. S., Wong, D. W. L., Bucala, R., Djudjaj, S., & Boor, P. (2019). Evolving complexity of MIF signaling. Cell Signal, 57, 76-88.
Jayathilaka, D., Gomes, L., Jeewandara, C., Jayarathna, G. S. B., Herath, D., et al. (2018). Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat Commun, 9(1), 5242.
Johnson, A. J., & Roehrig, J. T. (1999). New mouse model for dengue virus vaccine testing. J Virol, 73(1), 783-786.
Junjhon, J., Edwards, T. J., Utaipat, U., Bowman, V. D., Holdaway, H. A., et al. (2010). Influence of pr-M Cleavage on the Heterogeneity of Extracellular Dengue Virus Particles. J Virol, 84(16), 8353-8358.
Juno, J. A., Keynan, Y., & Fowke, K. R. (2012). Invariant NKT cells: regulation and function during viral infection. PLoS Pathog, 8(8), e1002838.
Katzelnick, L. C., Gresh, L., Halloran, M. E., Mercado, J. C., Kuan, G., et al. (2017). Antibody-dependent enhancement of severe dengue disease in humans. Science, 358(6365), 929-932.
Khakpoor, A., Panyasrivanit, M., Wikan, N., & Smith, D. R. (2009). A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J. Gen. Virol., 90(Pt 5), 1093-1103.
Khan, A. M., Miotto, O., Nascimento, E. J., Srinivasan, K. N., Heiny, A. T., et al. (2008). Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl Trop Dis, 2(8), e272.
Kikuchi, D., Tanimoto, K., & Nakayama, K. (2016). CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1 alpha and PERK. Biochem Biophys Res Commun, 469(2), 243-250.
Kim, J., Gee, H. Y., & Lee, M. G. (2018). Unconventional protein secretion - new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci, 131(12).
Kleemann, R., Hausser, A., Geiger, G., Mischke, R., Burger-Kentischer, A., et al. (2000). Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature, 408(6809), 211-216.
Konishi, E., Kitai, Y., & Kondo, T. (2008). Utilization of complement-dependent cytotoxicity to measure low levels of antibodies: Application to nonstructural protein 1 in a model of Japanese encephalitis virus. Clin Vaccine Immunol, 15(1), 88-94.
Krishna, V. D., Rangappa, M., & Satchidanandam, V. (2009). Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells. J Virol, 83(10), 4766-4777.
Krishnan, M. N., & Garcia-Blanco, M. A. (2014). Targeting Host Factors to Treat West Nile and Dengue Viral Infections. Viruses-Basel, 6(2), 683-708.
Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717-725.
Kyei, G. B., Dinkins, C., Davis, A. S., Roberts, E., Singh, S. B., et al. (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol, 186(2), 255-268.
Lanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G. J., & Vorndam, A. V. (1992). Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol, 30(3), 545-551.
Lang, T., Foote, A., Lee, J. P., Morand, E. F., & Harris, J. (2015). MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol, 6, 577.
Lannes, N., Summerfield, A., & Filgueira, L. (2017). Regulation of inflammation in Japanese encephalitis. J Neuroinflamm, 14.
Lee, Y. H., Judge, A. D., Seo, D., Kitade, M., Gomez-Quiroz, L. E., Ishikawa, T., et al. (2011). Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene, 30(40), 4175-4184.
Lee, Y. R., Kuo, S. H., Lin, C. Y., Fu, P. J., Lin, Y. S., et al. (2018). Dengue virus-induced ER stress is required for autophagy activation, viral replication, and pathogenesis both in vitro and in vivo. Sci Rep, 8(1), 489.
Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., et al. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2), 240-248.
Lee, Y. R., Liu, M. T., Lei, H. Y., Liu, C. C., Wu, J. M., et al. (2006). MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J. Gen. Virol., 87(Pt 12), 3623-3630.
Leech, M., Metz, C., Hall, P., Hutchinson, P., Gianis, K., et al. (1999). Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum, 42(8), 1601-1608.
Leela, S. L., Srisawat, C., Sreekanth, G. P., Noisakran, S., Yenchitsomanus, P. T., et al. (2016). Drug repurposing of minocycline against dengue virus infection. Biochem. Biophys. Res. Commun., 478(1), 410-416.
Leis, A. A., Szatmary, G., Ross, M. A., & Stokic, D. S. (2014). West nile virus infection and myasthenia gravis. Muscle Nerve, 49(1), 26-29.
Leng, L., Metz, C. N., Fang, Y., Xu, J., Donnelly, S., et al. (2003). MIF signal transduction initiated by binding to CD74. J Exp Med, 197(11), 1467-1476.
Libraty, D. H., Pichyangkul, S., Ajariyakhajorn, C., Endy, T. P., & Ennis, F. A. (2001). Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol, 75(8), 3501-3508.
Libraty, D. H., Young, P. R., Pickering, D., Endy, T. P., Kalayanarooj, S., et al. (2002). High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis, 186(8), 1165-1168.
Lim, C. S., & Poh, C. L. (2018). Development of dengue vaccines. Med J Aust, 11(6), 370-380.
Lin, C. F., Chiu, S. C., Hsiao, Y. L., Wan, S. W., Lei, H. Y., et al. (2005). Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol, 174(1), 395-403.
Lin, C. F., Lei, H. Y., Liu, C. C., Liu, H. S., Yeh, T. M., et al. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol, 63(2), 143-149.
Lin, Y. S., Yeh, T. M., Lin, C. F., Wan, S. W., Chuang, Y. C., et al. (2011). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med, 236(5), 515-523.
Lindenbach, B. D., & Rice, C. M. (1997). trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol, 71(12), 9608-9617.
Liu, I. J., Chiu, C. Y., Chen, Y. C., & Wu, H. C. (2011). Molecular Mimicry of Human Endothelial Cell Antigen by Autoantibodies to Nonstructural Protein 1 of Dengue Virus. J Biol Chem, 286(11), 9726-9736.
Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., et al. (2016). p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett, 21, 29.
Lok, S. M., Kostyuchenko, V., Nybakken, G. E., Holdaway, H. A., Battisti, A. J., et al. (2008). Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol, 15(3), 312-317.
Loo, Y. M., Fornek, J., Crochet, N., Zeng, H., Akira, S., et al. (2007). Distinct RIG-I and MDA5 signaling regulation by RNA viruses in innate immunity. J Interf Cytok Res, 27(8), 697-697.
Lue, H. Q., Kapurniotu, A., Fingerle-Rowson, G., Roger, T., Leng, L., et al. (2006). Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cell Signal, 18(5), 688-703.
Lunemann, J. D., Edwards, N., Muraro, P. A., Hayashi, S., Cohen, J. I., et al. (2006). Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain, 129(Pt 6), 1493-1506.
Luo, D. H., Xu, T., Watson, R. P., Scherer-Becker, D., Sampath, A., et al. (2008). Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J., 27(23), 3209-3219.
Lytle, C. D., & Sagripanti, J. L. (2005). Predicted inactivation of viruses of relevance to biodefense by solar radiation. J Virol, 79(22), 14244-14252.
MacKenzie, A., Wilson, H. L., Kiss-Toth, E., Dower, S. K., North, R. A., et al. (2001). Rapid secretion of interleukin-1 beta by microvesicle shedding. Immunity, 15(5), 825-835.
MacLennan, C. A., Gilchrist, J. J., Gordon, M. A., Cunningham, A. F., Cobbold, M., et al. (2010). Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults. Science, 328(5977), 508-512.
Mangione, J. N., Huy, N. T., Lan, N. T., Mbanefo, E. C., Ha, T. T., et al. (2014). The association of cytokines with severe dengue in children. Trop Med Health, 42(4), 137-144.
Martin, T. R. (2000). MIF mediation of sepsis. Nat Med, 6(2), 140-141.
Mastrangelo, E., Pezzullo, M., De Burghgraeve, T., Kaptein, S., Pastorino, B., et al. (2012). Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J Antimicrob Chemoth, 67(8), 1884-1894.
McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D., & Zakeri, Z. (2011). Flavivirus NS4A-induced Autophagy Protects Cells against Death and Enhances Virus Replication. J Biol Chem, 286(25), 22147-22159.
Merk, M., Baugh, J., Zierow, S., Leng, L., Pal, U., et al. (2009). The Golgi-Associated Protein p115 Mediates the Secretion of Macrophage Migration Inhibitory Factor. J Immunol, 182(11), 6896-6906.
Miagostovich, M. P., Ramos, R. G., Nicol, A. F., Nogueira, R. M., Cuzzi-Maya, T., et al. (1997). Retrospective study on dengue fatal cases. Clin Neuropathol, 16(4), 204-208.
Michaelis, M., Kleinschmidt, M. C., Doerr, H. W., & Cinatl, J., Jr. (2007). Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J Antimicrob Chemother, 60(5), 981-986.
Milane, A., Tortolano, L., Fernandez, C., Bensimon, G., Meininger, V., et al. (2009). Brain and Plasma Riluzole Pharmacokinetics: Effect of Minocycline Combination. Int J Pharm Pharm Sci, 12(2), 209-217.
Mishra, M. K., Ghosh, D., Duseja, R., & Basu, A. (2009). Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int, 54(7), 464-470.
Mizushima, N. (2007). Autophagy: process and function. Genes Dev, 21(22), 2861-2873.
Modhiran, N., Watterson, D., Muller, D. A., Panetta, A. K., Sester, D. P., et al. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med, 7(304), 304ra142.
Morand, E. F., Leech, M., Weedon, H., Metz, C., Bucala, R., et al. (2002). Macrophage migration inhibitory factor in rheumatoid arthritis: clinical correlations. Rheumatology, 41(5), 558-562.
Morrison, M. C., & Kleemann, R. (2015). Role of Macrophage Migration Inhibitory Factor in Obesity, Insulin Resistance, Type 2 Diabetes, and Associated Hepatic Co-Morbidities: A Comprehensive Review of Human and Rodent Studies. Front Immunol, 6, 308.
Narvaez, F., Gutierrez, G., Perez, M. A., Elizondo, D., Nunez, A., et al. (2011). Evaluation of the traditional and revised WHO classifications of Dengue disease severity. PLoS Negl. Trop. Dis., 5(11), e1397.
Nascimento, E. J. M., Silva, A. M., Cordeiro, M. T., Brito, C. A., Gil, L. H. V. G., et al. (2009). Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity. PLoS One, 4(8).
Nelson, P. N., Reynolds, G. M., Waldron, E. E., Ward, E., Giannopoulos, K., et al. (2000). Monoclonal antibodies. Mol Pathol, 53(3), 111-117.
Nishino, T., Bernhagen, J., Shiiki, H., Calandra, T., Dohi, K., et al. (1995). Localization of Macrophage-Migration Inhibitory Factor (Mif) to Secretory Granules within the Corticotropic and Thyrotropic Cells of the Pituitary-Gland. Mol Med, 1(7), 781-788.
Noisakran, S., Dechtawewat, T., Avirutnan, P., Kinoshita, T., Siripanyaphinyo, U., et al. (2008). Association of dengue virus NS1 protein with lipid rafts. J. Gen. Virol., 89, 2492-2500.
Noisakran, S., Onlamoon, N., Hsiao, H. M., Clark, K. B., Villinger, F., et al. (2012). Infection of bone marrow cells by dengue virus in vivo. Exp Hematol, 40(3), 250-259 e254.
Orvedahl, A., Alexander, D., Talloczy, Z., Sun, Q., Wei, Y., et al. (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe, 1(1), 23-35.
Pan, P., Zhang, Q., Liu, W. Y., Wang, W. B., Lao, Z. Z., et al. (2019). Dengue Virus M Protein Promotes NLRP3 Inflammasome Activation To Induce Vascular Leakage in Mice. J Virol, 93(21).
Panyasrivanit, M., Greenwood, M. P., Murphy, D., Isidoro, C., Auewarakul, P., et al. (2011). Induced autophagy reduces virus output in dengue infected monocytic cells. Virology, 418(1), 74-84.
Panyasrivanit, M., Khakpoor, A., Wikan, N., & Smith, D. R. (2009). Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J. Gen. Virol., 90(Pt 2), 448-456.
Park, K. Y., Kim, S. J., Oh, E., & Heo, T. H. (2015). Induction of vascular leak syndrome by tumor necrosis factor-alpha alone. Biomed Pharmacother, 70, 213-216.
Pati, R., Shevtsov, M., & Sonawane, A. (2018). Nanoparticle Vaccines Against Infectious Diseases. Front Immunol, 9.
Patro, A. R. K., Mohanty, S., Prusty, B. K., Singh, D. K., Gaikwad, S., et al. (2019). Cytokine Signature Associated with Disease Severity in Dengue. Viruses, 11(1).
Payne, A. F., Binduga-Gajewska, I., Kauffman, E. B., & Kramer, L. D. (2006). Quantitation of flaviviruses by fluorescent focus assay. J. Virol. Methods, 134(1-2), 183-189.
Perera-Lecoin, M., Meertens, L., Carnec, X., & Amara, A. (2013). Flavivirus entry receptors: an update. Viruses, 6(1), 69-88.
Petrovsky, N., Socha, L., Silva, D., Grossman, A. B., Metz, C., et al. (2003). Macrophage migration inhibitory factor exhibits a pronounced circadian rhythm relevant to its role as a glucocorticoid counter-regulator. Immunol Cell Biol, 81(2), 137-143.
Poh, M. K., Yip, A., Zhang, S., Priestle, J. P., Ma, N. L., et al. (2009). A small molecule fusion inhibitor of dengue virus. Antivir Res, 84(3), 260-266.
Poulsen, K., Mcmullen, M., Sheehan, M., Leng, L., Bucala, R., & Nagy, L. (2018). Protection from Gao-Binge induced liver injury in Mif-/- Mice is associated with decreased ER stress. J Hepatol, 68, S47-S48.
Puerta-Guardo, H., Glasner, D. R., Espinosa, D. A., Biering, S. B., Patana, M., et al. (2019). Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Reports, 26(6), 1598-+.
Puerta-Guardo, H., Glasner, D. R., & Harris, E. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog., 12(7), e1005738.
Radu, M., & Chernoff, J. (2013). An in vivo assay to test blood vessel permeability. J Vis Exp(73), e50062.
Raghupathy, R., Chaturvedi, U. C., Al-Sayer, H., Elbishbishi, E. A., Agarwal, R., et al. (1998). Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol, 56(3), 280-285.
Rashid, H. O., Yadav, R. K., Kim, H. R., & Chae, H. J. (2015). ER stress: Autophagy induction, inhibition and selection. Autophagy, 11(11), 1956-1977.
Rassaf, T., Weber, C., & Bernhagen, J. (2014). Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury. Cardiovasc Res, 102(2), 321-328.
Reddy, S. B. G., Chin, W. X., & Shivananju, N. S. (2018). Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol, 154, 54-63.
Regis, E. G., Barreto-de-Souza, V., Morgado, M. G., Bozza, M. T., Leng, L., et al. (2010). Elevated levels of macrophage migration inhibitory factor (MIF) in the plasma of HIV-1-infected patients and in HIV-1-infected cell cultures: a relevant role on viral replication. Virology, 399(1), 31-38.
Reyes-Sandoval, A., & Ludert, J. E. (2019). The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol, 10, 1651.
Rodenhuis-Zybert, I. A., Wilschut, J., & Smit, J. M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci, 67(16), 2773-2786.
Rodenhuis-Zybert, I. A., Wilschut, J., & Smit, J. M. (2011). Partial maturation: an immune-evasion strategy of dengue virus? Trends in Microbiology, 19(5), 248-254.
Rothman, A. L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol, 11(8), 532-543.
Rouvinski, A., Guardado-Calvo, P., Barba-Spaeth, G., Duquerroy, S., Vaney, M. C., et al. (2015). Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature, 520(7545), 109-+.
Samanta, J., & Sharma, V. (2015). Dengue and its effects on liver. World J Clin Cases, 3(2), 125-131.
Savidis, G., McDougall, W. M., Meraner, P., Perreira, J. M., Portmann, J. M., et al. (2016). Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Rep, 16(1), 232-246.
Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W., & Bartenschlager, R. (2015). Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathog., 11(11).
Schafer, T., Zentgraf, H., Zehe, C., Brugger, B., Bernhagen, J., et al. (2004). Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J Biol Chem, 279(8), 6244-6251.
Schlesinger, J. J., Brandriss, M. W., Cropp, C. B., & Monath, T. P. (1986). Protection against Yellow-Fever in Monkeys by Immunization with Yellow-Fever Virus Nonstructural Protein Ns1. J Virol, 60(3), 1153-1155.
Schlesinger, J. J., Brandriss, M. W., & Walsh, E. E. (1985). Protection against 17d Yellow-Fever Encephalitis in Mice by Passive Transfer of Monoclonal-Antibodies to the Nonstructural Glycoprotein Gp48 and by Active Immunization with Gp48. J Immunol, 135(4), 2805-2809.
Schlesinger, J. J., Brandriss, M. W., & Walsh, E. E. (1987). Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol., 68 ( Pt 3), 853-857.
Schlesinger, J. J., Foltzer, M., & Chapman, S. (1993). The Fc Portion of Antibody to Yellow-Fever Virus-Ns1 Is a Determinant of Protection against Yf Encephalitis in Mice. Virology, 192(1), 132-141.
Schroder, M., & Kaufman, R. J. (2005). ER stress and the unfolded protein response. Mutat Res, 569(1-2), 29-63.
Schwartz, V., Lue, H. Q., Kraemer, S., Korbiel, J., Krohn, R., Ohl, K., et al. (2009). A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett., 583(17), 2749-2757.
Settembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science, 332(6036), 1429-1433. Shackelford, C., Long, G., Wolf, J., Okerberg, C., & Herbert, R. (2002). Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol, 30(1), 93-96.
Shi, X. R., Leng, L., Wang, T., Wang, W. K., Du, X., et al. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity, 25(4), 595-606.
Shresta, S., Sharar, K. L., Prigozhin, D. M., Snider, H. M., Beatty, P. R., et al. (2005). Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J. Immunol., 175(6), 3946-3954.
Simanjuntak, Y., Liang, J. J., Lee, Y. L., & Lin, Y. L. (2015). Repurposing of Prochlorperazine for Use Against Dengue Virus Infection. J. Infect. Dis, 211(3), 394-404.
Simmons, C. P., McPherson, K., Van Vinh Chau, N., Hoai Tam, D. T., Young, P., et al. (2015). Recent advances in dengue pathogenesis and clinical management. Vaccine, 33(50), 7061-7068.
Sprokholt, J. K., Kaptein, T. M., van Hamme, J. L., Overmars, R. J., Gringhuis, S. I., et al. (2017). RIG-I-like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and TH1 Differentiation. J Immunol, 198(12), 4764-4771.
Srinivasappa, J., Saegusa, J., Prabhakar, B. S., Gentry, M. K., Buchmeier, M. J., et al. (1986). Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol, 57(1), 397-401.
Stern, O., Hung, Y. F., Valdau, O., Yaffe, Y., Harris, E., et al. (2013). An N-Terminal Amphipathic Helix in Dengue Virus Nonstructural Protein 4A Mediates Oligomerization and Is Essential for Replication. J Virol, 87(7), 4080-4085.
Stoppe, C., Averdunk, L., Goetzenich, A., Soppert, J., Marlier, A., et al. (2018). The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med, 10(441).
Suzuki, T., Ogata, A., Tashiro, K., Nagashima, K., Tamura, M., et al. (2000). Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain. Biochim. Biophys. Acta, 1517(1), 100-106.
Swaminathan, S., & Khanna, N. (2019). Dengue vaccine development: Global and Indian scenarios. Int J Infect Dis, 84, S80-S86.
Swarbrick, C. M. D., Basavannacharya, C., Chan, K. W. K., Chan, S. A., Singh, D., et al. (2017). NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res, 45(22).
Szeto, G. L., Brice, A. K., Yang, H. C., Barber, S. A., Siliciano, R. F., et al. (2010). Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J Infect Dis, 201(8), 1132-1140.
Tang, X. N., Berman, A. E., Swanson, R. A., & Yenari, M. A. (2010). Digitally quantifying cerebral hemorrhage using Photoshop and Image J. J Neurosci Methods, 190(2), 240-243.
Teijaro, J. R. (2017). Cytokine storms in infectious diseases. Semin Immunopathol, 39(5), 501-503.
Thiemmeca, S., Tamdet, C., Punyadee, N., Prommool, T., Songjaeng, A., et al. (2016). Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin-Mediated Neutralization. J. Immunol, 197(10), 4053-4065.
Tian, Y., Wang, M. L., & Zhao, J. (2019). Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses-Basel, 11(2).
Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., et al. (2012). Into the Eye of the Cytokine Storm. Microbiol Mol Biol R, 76(1), 16-32.
Tong, Y. X., Huang, H. J., & Pan, H. Y. (2015). Inhibition of MEK/ERK activation attenuates autophagy and potentiates pemetrexed-induced activity against HepG2 hepatocellular carcinoma cells. Biochem Bioph Res Co, 456(1), 86-91.
Tripathi, N. K., & Shrivastava, A. (2018). Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol, 9.
Tsai, T. T., Chen, C. L., Tsai, C. C., & Lin, C. F. (2017). Targeting heat shock factor 1 as an antiviral strategy against dengue virus replication in vitro and in vivo. Antiviral Res., 145, 44-53.
Tsai, T. T., Chuang, Y. J., Lin, Y. S., Chang, C. P., Wan, S. W., Lin, S. H., et al. (2014). Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis, 8(11), e3320.
Tseng, C. S., Lo, H. W., Teng, H. C., Lo, W. C., & Ker, C. G. (2005). Elevated levels of plasma VEGF in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol, 43(1), 99-102.
Tseng, Y. F., Wang, C. C., Liao, S. K., Chuang, C. K., & Chen, W. J. (2011). Autoimmunity-related demyelination in infection by Japanese encephalitis virus. J Biomed Sci, 18, 20.
van Cleef, K. W. R., Overheul, G. J., Thomassen, M. C., Kaptein, S. J. F., Davidson, A. D., et al. (2013). Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antivir Res, 99(2), 165-171.
Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., et al. (2000). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis., 181(1), 2-9.
Veillat, V., Lavoie, C. H., Metz, C. N., Roger, T., Labelle, Y., et al. (2009). Involvement of nuclear factor-kappaB in macrophage migration inhibitory factor gene transcription up-regulation induced by interleukin- 1 beta in ectopic endometrial cells. Fertil Steril, 91(5 Suppl), 2148-2156.
Vigne, C., Dupuy, M., Richetin, A., Guy, B., Jackson, N., et al. (2017). Integrated immunogenicity analysis of a tetravalent dengue vaccine up to 4 y after vaccination. Hum Vacc Immunother, 13(9), 2004-2016.
Waeber, G., Calandra, T., Bonny, C., & Bucala, R. (1999). A role for the endocrine and proinflammatory mediator MIF in the control of insulin secretion during stress. Diabetes Metab Res Rev, 15(1), 47-54.
Wan, S. W., Chen, P. W., Chen, C. Y., Lai, Y. C., Chu, Y. T., et al. (2017). Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. J. Immunol., 199(8), 2834-2844.
Wan, S. W., Lu, Y. T., Huang, C. H., Lin, C. F., Anderson, R., et al. (2014). Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One, 9(3), e92495.
Wang, L., & Ou, J. J. (2018). Regulation of Autophagy by Hepatitis C Virus for Its Replication. DNA Cell Biol, 37(4), 287-290.
Wang, Q. Y., Kondreddi, R. R., Xie, X. P., Rao, R., Nilar, S., et al. (2011). A Translation Inhibitor That Suppresses Dengue Virus In Vitro and In Vivo. Antimicrob Agents Ch, 55(9), 4072-4080.
Wang, Q. Y., Patel, S. J., Vangrevelinghe, E., Xu, H. Y., Rao, R., et al. (2009). A Small-Molecule Dengue Virus Entry Inhibitor. Antimicrob Agents Ch, 53(5), 1823-1831.
Wang, W. K., Chao, D. Y., Kao, C. L., Wu, H. C., Liu, Y. C., et al. (2003). High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology, 305(2), 330-338.
Wang, Y., & Zhang, P. (2017). Recent advances in the identification of the host factors involved in dengue virus replication. Virol Sin, 32(1), 23-31.
Weiskopf, D., Angelo, M. A., de Azeredo, E. L., Sidney, J., Greenbaum, J. A., et al. (2013). Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8(+) T cells. Proc. Natl. Acad. Sci. U. S. A., 110(22), E2046-E2053.
Wilder-Smith, A., Ooi, E. E., Horstick, O., & Wills, B. (2019). Dengue. Lancet, 393(10169), 350-363.
Williams, K. L., Sukupolvi-Petty, S., Beltramello, M., Johnson, S., Sallusto, F., et al. (2013). Therapeutic Efficacy of Antibodies Lacking Fc gamma R against Lethal Dengue Virus Infection Is Due to Neutralizing Potency and Blocking of Enhancing Antibodies. PLoS Pathog., 9(2).
Wilson, J. M., Coletta, P. L., Cuthbert, R. J., Scott, N., MacLennan, K., et al. (2005). Macrophage migration inhibitory factor promotes intestinal tumorigenesis. Gastroenterology, 129(5), 1485-1503.
Wu, M. F., Chen, S. T., Yang, A. H., Lin, W. W., Lin, Y. L., et al. (2013). CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood, 121(1), 95-106.
Xie, L., Qiao, X., Wu, Y., & Tang, J. (2011). beta-Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One, 6(1), e16428.
Xu, M. H., Zuest, R., Velumani, S., Tukijan, F., Toh, Y. X., et al. (2017). A potent neutralizing antibody with therapeutic potential against all four serotypes of dengue virus. Npj Vaccines, 2.
Xu, S., Guo, X., Gao, X., Xue, H., Zhang, J., et al. (2016). Macrophage migration inhibitory factor enhances autophagy by regulating ROCK1 activity and contributes to the escape of dendritic cell surveillance in glioblastoma. Int J Oncol, 49(5), 2105-2115.
Xu, X., Song, H., Qi, J., Liu, Y., Wang, H., et al. (2016). Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J, 35(20), 2170-2178.
Yang, J. M., Chen, Y. F., Tu, Y. Y., Yen, K. R., & Yang, Y. L. (2007). Combinatorial Computational Approaches to Identify Tetracycline Derivatives as Flavivirus Inhibitors. PLoS One, 2(5).
Yang, Z., Goronzy, J. J., & Weyand, C. M. (2015). Autophagy in autoimmune disease. J Mol Med (Berl), 93(7), 707-717.
Yeh, T. M., Liu, S. H., Lin, K. C., Kuo, C., Kuo, S. Y., et al. (2013). Dengue virus enhances thrombomodulin and ICAM-1 expression through the macrophage migration inhibitory factor induction of the MAPK and PI3K signaling pathways. PLoS One, 8(1), e55018.
Yen, Y. T., Chen, H. C., Lin, Y. D., Shieh, C. C., & Wu-Hsieh, B. A. (2008). Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol, 82(24), 12312-12324.
Yu, J. S., Wu, Y. H., Tseng, C. K., Lin, C. K., Hsu, Y. C., et al. (2017). Schisandrin A inhibits dengue viral replication via upregulating antiviral interferon responses through STAT signaling pathway. Sci Rep-Uk, 7.
Yusof, R., Clum, S., Wetzel, M., Murthy, H. M. K., & Padmanabhan, R. (2000). Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem, 275(14), 9963-9969.
Zainal, N., Chang, C. P., Cheng, Y. L., Wu, Y. W., Anderson, R., et al. (2017). Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep-Uk, 7.
Zeeshan, H. M. A., Lee, G. H., Kim, H. R., & Chae, H. J. (2016). Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci, 17(3).
Zellweger, R. M., & Shresta, S. (2014). Mouse models to study dengue virus immunology and pathogenesis. Front. Immunol., 5, 151.
Zhang, Z. Z., Rong, L., & Li, Y. P. (2019). Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxid. Med. Cell. Longev, 2019.
Zhou, D., & Spector, S. A. (2008). Human immunodeficiency virus type-1 infection inhibits autophagy. Aids, 22(6), 695-699.
Zhou, Z., Jiang, X., Liu, D., Fan, Z., Hu, X., et al. (2009). Autophagy is involved in influenza A virus replication. Autophagy, 5(3), 321-328.
Zybert, I. A., van der Ende-Metselaar, H., Wilschut, J., & Smit, J. M. (2008). Functional importance of dengue virus maturation: infectious properties of immature virions. J.Gen. Virol, 89, 3047-3051.