簡易檢索 / 詳目顯示

研究生: 許光曦
Hsu, Kuang-Hsi
論文名稱: 航空發動機燃燒室測試模型設計與實作
Design and Implementation of Aerospace Engine Combustion Chamber Test Model
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 77
中文關鍵詞: 燃燒室旋流器Jet A-1渦輪扇葉發動機排放分析
外文關鍵詞: Combustion Chamber, Swirler, Jet A-1, Turbofan Engine, Emission Analysis
相關次數: 點閱:21下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於航空發動機燃燒室內部燃燒反應的複雜性,早期的航空發動機燃燒室設計皆藉由過去成功的經驗與大量的一維計算及簡易燃燒室模型的試驗結果,逐步修正而得出最終成果。但這種藉由大量試錯來完成燃燒室設計的方法有成本高、耗時長及測試結果不完整等缺點。之後發展出CFD軟體能夠協助開發,然而實驗室實際進行燃燒研究時除了電腦模擬之外,還需要有實際的實驗結果來做驗證。但使用既有的航空發動機來做驗證是不切實際的想法,因為通常使用的簡易燃燒室觀察箱其外型與結構皆與實際差異甚大,時常需要反覆進行測試來改進其設計缺陷。

    本論文藉由研究現有主流渦輪扇葉發動機燃燒室,嘗試自行開發設計出一款小型航空發動機燃燒室測試模型並使用自行設計之45度Swirler(旋流器)進行燃燒測試,本次自行設計的燃燒室模型使用Jet A-1當作燃料進行測試。根據測試結果發現,在當量比0.8時Jet A-1具有最佳的燃燒結果,其燃燒後廢棄物如CO、NO及HC對比於其他當量比組別,燃燒時於空氣中的濃度含量更低。在當量比0.8時,於可見光相機的拍攝下可以看到明亮且穩定的火焰核心,而當量比0.9到1.2時,火焰核心的形狀穩定性較差且好似充滿了懸浮物一般混濁,表示其渦流結構不足以形成穩定的回流區域。在OH*化學發光相機的拍攝下,可以看到當量比0.8時其火焰的OH*化學發光呈鐘罩形,CRZ 明顯,OH*分布均勻。

    本測試模型成功實現燃燒觀察、成份採集分析與流場模擬驗證等功能,可應用於多種燃料類型與旋流器設計參數之實驗研究,進一步提升我國航空動力技術自主研發能力。期望在未來對於國內航空引擎燃燒室的研究及開發上做出一些貢獻,進而加強國內在軍民用航空引擎上的研發能力並達到縮短研發週期的效能。

    Due to the complexity combustion reaction of combustion chamber. Early combustion chamber designs were slowly modified based on past successes experience to achieve results. However, this method of completing design through a lot of trial & error has the disadvantages of high cost, long time consumption and incomplete test results.

    Later, CFD software was developed to assist in development. However, when conducting actual research in the laboratory, in addition to computer simulations, actual experimental results are also needed for verification. But it is impractical to use existing aircraft engines for verification. The appearance and structure of the common simple combustion chamber model are very different from the actual situation. Repeated testing is often required to improve the design defects.

    This thesis studies the combustion chamber of existing mainstream turbofan engines, attempts to develop and design a small combustion chamber model, and uses a self-designed 45-degree swirler to conduct combustion tests. This self-designed combustion chamber model was tested by using Jet A-1 as the fuel. According to the experimental results, Jet A-1 has lower CO, NO and HC emissions when using a 45-degrees blade angle Swirler at equivalence ratio of 0.8. When photographed with a visible light camera, the flame shapes are clearer and brighter than other results.

    The test model successfully integrates combustion, observation, emission sampling functions, and demonstrates potential for further applications involving alternative fuels and swirler configurations. This implementation is expected to contribute to the domestic development of advanced combustion technologies.

    This implementation is expected to make some contribution to the research and development of future aviation engine combustion chambers, thereby enhancing the development capabilities in military and civil aviation engines and achieving the expectation of shortening the development cycle.

    中文摘要 I Extended Abstract II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.3 研究流程 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 航空發動機燃燒室 6 2.1.1 航空發動機燃燒室介紹 6 2.1.2 燃燒室的基本設計要求 7 2.2 航空發動機燃燒室樣式介紹 8 2.3 世界主流航空發動機燃燒室設計理念與發展方向 10 2.3.1 主流航空發動機設計理念 10 2.3.2 未來航空發動機發展方向與難點 12 2.3.3 新世代航空引擎燃燒室設計概念介紹 13 2.4 航空引擎燃燒室實驗平台及旋流器設計概念文獻介紹 15 2.5 各類Swirler效能比較與Swirler Number對燃燒穩定性之影響 17 2.5.1 Swirler 結構類型與應用 17 2.5.2 Swirl Number 與火焰穩定性關係 17 2.5.3 數值模擬與實驗之效能比較 19 2.5.4 發展趨勢與研究展望 19 第三章 實驗設備與研究方法 20 3.1 自製小型航空發動機燃燒室模型 20 3.1.1 模型設計理念 20 3.1.2 基礎構造 25 3.1.3 運作原理 45 3.2 實驗方法 46 3.2.1 實驗架構 46 3.2.2 實驗步驟 47 第四章 實驗結果與討論 49 4.1 燃燒後資料收集結果 49 第五章 結論與建議 56 中文參考文獻 57 英文參考文獻 58

    [1] 王瑾, 郝慧娣, 曹喬喬, 基於CFD的旋流噴嘴內部流場模擬研究, 現代化工, Vol. 35, Issue (3), P.159-161,163, 2015
    [2] 陳大達, 民用航空發動機概論:圖解式活塞與渦輪噴射發動機入門, 威秀經典, 台北, 2015, ISBN:9789863263166
    [3] 廖宜寬, 移動式薄膜冷卻之研究, 碩士論文, 國立交通大學機械工程系所, 2006
    [4] Agwu, Ogbonnaya; Runyon, Jon; Goktepe, Burak; Cheng, Tung Chong; Ng, Jo-Han; Giles, Anthony; Valera-Medina, Agustin; Visualisation and performance evaluation of biodiesel/methane cocombustion in a swirl-stabilised gas turbine combustor, Fuel, Vol. 277, 2020
    [5] AXO-CY High Induction Adjustable Round Swirl Diffuser, Commercial Application Equipment, Made by EffectiV HVAC Inc., 2025
    [6] B-1-1_PurePowerEngineFamily_SpecsChart, Pratt & Whitney, 2012
    [7] Boushaki, Toufik; Swirling Flows and Flames, IntechOpen, ISBN978-1-83880-744-3, 2019
    [8] Bae, Jinhyun; Ardebili, Yazdan Naderzadeh; Vena, Patrizio; Chaudhuri, Swetaprovo; Effect of swirler spin on flame shape and combustion dynamics, Proceedings of the Combustion Institute, Vol. 40, Issue (1–4), 2024
    [9] Chen, Zhi X.; Swaminathan, Nedunchezhian; Influence of fuel plenum on thermoacoustic oscillations inside a swirl combustor, Fuel, Vol. 275, 2020
    [10] Chiong, Meng-Choung; Valera-Medina, Agustin; Chong, Woei Fong William; Chong, Cheng Tung; Mong, Guo Ren; Jaafar, Mohammad Nazri Mohd; Effects of swirler vane angle on palm biodiesel/natural gas combustion in swirl-stabilised gas turbine combustor, Fuel, Vol. 277, 2020
    [11] Choi, Minsung; Choi, Keun Won; Kang, Do Won; Muhammad, Hafiz Ali; Lee, Young Duk; Experimental investigation of combustion characteristics of a CH4/O2 premixed flame: Effect of swirl intensity on flame structure, flame stability, and emissions, Case Studies in Thermal Engineering, Vol. 55, 2024
    [12] Durox, Daniel; Moeck, Jonas P.; Bourgouin, Jean-François; Morenton, Pascal; Viallon, Marc; Schuller, Thierry; Candel, Sébastien; Flame dynamics of a variable swirl number system and instability control, Combustion and Flame, Vol. 160, Issue (9), P.1729-1742, 2013
    [13] Esclapez, Lucas; Ma, Peter C.; Mayhew, Eric; Xu, Rui; Stouffer, Scott; Lee, Tonghun; Wang, Hai; Ihme, Matthias; Fuel effects on lean blow-out in a realistic gas turbine combustor, Combustion and Flame, Vol. 181, P.82–99, 2017
    [14] Fu, Yongqiang; Aerodynamics and Combustion of Axial Swirlers, DOCTORATE OF PHILOSOPHY (Ph.D.), Department of Aerospace Engineering and Engineering Mechanics of the College of Engineering, Division of Research and Advanced Studies of the University of Cincinnati, 2008.
    [15] Feng, LI; Ming, CHENG; SHANG, Shou-tang; LIU, Dian-chun; ZHANG, Shan-shan; SONG, Bo; Capability compare of twin annular premixing swirler with the single annular and dual annular combustor, Journal of Aerospace Power, Vol. 27, Issue (8), P.1681-1687, 2012
    [16] Falese, Mario; Gicquel, Laurent Y.M.; Poinsot, Thierry; LES of bifurcation and hysteresis in confined annular swirling flows, Computers & Fluids, Vol. 89, P.167-178, 2014
    [17] Faradiba, F.; Yuniarti, Endah; Thermodynamic Concepts on Efficiency of Aircraft Engines, Physical Science International Journal, Vol. 25, Issue(1), 1-7, 2021
    [18] Giuliani, Fabrice; Paulitsch, Nina; Cozzi, Daniele; Görtler, Michael; Andracher, Lukas; An Assessment on the Benefits of Additive Manufacturing Regarding New Swirler Geometries for Gas Turbine Burners, ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018
    [19] He, Zhuohui J; NOx Emissions Characteristics and Correlation Equations of Two P&W’s Axially Staged Sector Combustors Developed Under NASA Environmentally Responsible Aviation (ERA) Project, Glenn Research Center, NASA/TM, 2017
    [20] Hermawan, R.; Prasetyo, E.; Pane, E.A.; Gas fuel generator set thermodynamic analysis., Pros. Semnastek, Vol. 1, Issue(1), 2018
    [21] Jaafar, M. N. Mohd; Jusoff, K.; Osman, Mohamed Seroleh; Ishak, Mohd Shaiful Ashrul; Combustor aerodynamic using radial swirler, International Journal of the Physical Sciences, Vol. 6, Issue (13), P.3091-3098, 2011
    [22] Kao, Yi-Huan; Experimental Investigation of Aerodynamics and Combustion Properties of a Multiple-Swirler Array, DOCTORATE OF PHILOSOPHY (Ph.D.), Engineering and Applied Science: Aerospace Engineering, University of Cincinnati, 2014.
    [23] Katoch, Amit; Guiberti, Thibault F.; Campos, Daniel V. de; Lacoste, Deanna A.; Dual-fuel, dual-swirl burner for the mitigation of thermoacoustic instabilities in turbulent ammonia-hydrogen flames, Combustion and Flame, Vol. 246, 2022
    [24] Melconian, J. O., & Northern Research and Engineering Corporation, The Design and Development of Gas Turbine Combustors (Vol. 2), Woburn: Northern Research and Engineering Corporation, 1980
    [25] Nagpurwala, Q.; Design of Gas Turbine Combustors, Bengaluru: M.S. Ramaiah School of Advance Studies, PDF briefing, 2020
    [26] Okafor, Ekenechukwu C.; Somarathne, K.D. Kunkuma A.; Ratthanan, Rattanasupapornsak; Hayakawa, Akihiro; Kudo, Taku; Kurata, Osamu; Iki, Norihiko; Tsujimura, Taku; Furutani, Hirohide; Kobayashi, Hideaki; Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia, Combustion and Flame, Vol. 211, P.406–416, 2020
    [27] Rahim, Muhammad Roslan; Jaafar, Mohammad Nazri Mohd; Effect of Flame Angle Using Various Swirler Angle in Combustion Performance, Jurnal Teknologi, Vol.72, Issue (4), P.71-75, 2015
    [28] Regional Jet Engines PW1500G and PW1900G, K.H.I. technical review, Vol. 179, 2018
    [29] Runyon, Jon; Giles, Anthony; Marsh, Richard; Pugh, Daniel; Goktepe, Burak; Bowen, Philip; Morris, Steve; Characterization of Additive Layer Manufacturing Swirl Burner Surface Roughness and Its Effects on Flame Stability Using High-Speed Diagnostics, Journal of Engineering for Gas Turbines and Power, Vol. 142, 2020
    [30] Syred, N.; Beér, J.M.; Combustion in swirling flows: A review, Combustion and Flame, Vol. 23, Issue (2), P.143-201, 1974,
    [31] Samuelsen, Scott; 3.2.1.3 Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor, Gas Turbine Handbook, National Energy Technology Laboratory, Morgantown, 227-233, 2006
    [32] Singh, Akhilendra; Agarwal, Avinash; Low Temperature Combustion Engines and Mode Switching Strategies – A review, Journal of Energy and Environmental Sustainability, Vol. 6, P.42-47, 2018
    [33] Sun, Yu-ze; Rao, Zhu-ming; Zhao, Dan; Wang, Bing; Sun, Da-kun; Sun, Xiao-feng; Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor, Applied Energy, Vol. 264, 2020
    [34] Tozi, Luiz Vitor; Vidal, João; Tomita, Jesuino Takachi; Borille, Anderson Vicente; Bringuenti, Cleverson; Roma, Alexandre; Oliveira, Henrique Rodrigues; Potential Use of Additively Manufactured Swirlers for Gas Turbine Applications, International Journal of Gas Turbine Propulsion and Power Systems, Vol. 15, Issue (4), 2024
    [35] Velichko, E.I.; Bunyakin, A.V.; Muzykantova, A.V.; Analysis of Possible Operational Defects in and Damages to the Gas Turbine Drives of Gas Pumping Units and Techniques for Their Diagnostics, IOP Conf. Series: Earth and Environmental Science, Vol. 666, 022066, 2021
    [36] Zavaleta-Luna, Daniel Alejandro; Vigueras-Zúñiga, Marco Osvaldo; Herrera-May, Agustín L.; Zamora-Castro, Sergio Aurelio; Tejeda-del-Cueto, María Elena; Optimized Design of a Swirler for a Combustion Chamber of Non-Premixed Flame Using Genetic Algorithms, Energies, Vol. 13, Issue (9), P.1-26, 2020
    [37] Zhang, Junqing; Sui, Chunjie; Zhang, Bin; Li, Jun; Effects of swirl intensity on flame stability and NO emission in swirl-stabilized ammonia/methane combustion, Applications in Energy and Combustion Science, Vol. 14, 2023

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE