簡易檢索 / 詳目顯示

研究生: 李宗翰
LEE, Zong-Han
論文名稱: 單軸應變對3T3纖維母細胞機械特性影響之研究
Effects of uniaxial strain on mechanical properties of 3T3 fibroblast
指導教授: 林宙晴
Lin, Chou-Ching
朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 機械特性纖維母細胞原子力顯微鏡
外文關鍵詞: mechanical property, AFM, fibroblast
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來由於組織工程與神經科學的進展,神經再生的研究已不再限於理論的階段而進入了實際臨床的應用。其中的關鍵在於如何引導神經元往正確方向再生,且期待此再生程序能夠快速完成。雖已發展出輔助的神經導管以及許多促進再生的藥物,但是針對神經元的機械特性,以及外在物理性刺激對神經再生影響的研究仍在多方發展中。

      本研究著眼於細胞力學的領域,建立一套能準確量測到細胞力學特性的實驗方法與裝置,能夠精確量測細胞的機械特性,進而評估細胞受到外界刺激後所造成的機械特性變化。本研究的對象暫為纖維母細胞,由於此種細胞近年來廣泛研究,因此用以印證本研究所建立的方法與裝置。首先,在不同的基材包括塑膠、矽膠與PDMS上培養細胞,再以塑膠培養皿所培養的細胞機械特性為標準,與PDMS以及矽膠膜所培養的細胞相比較。實驗的結果發現細胞的楊氏係數會隨著基材種類而改變,PDMS上的細胞最硬,矽膠膜次之,培養皿最軟。其次比較三種不同基材上細胞貼附力量的高低,量測結果發現最大值不超過200nN,培養皿上貼附力量最大,矽膠膜次之,PDMS膜最弱。最後對細胞施與單軸的壓縮作用,藉以評估細胞受外力作用之後的變化。比較細胞與壓縮方向的平行截面與垂直截面上各點的機械性質,發現在細胞周邊區域會產生變化,垂直截面的楊氏係數下降,平行截面的楊氏係數上升。

      實驗結果與細胞生物學理論一致,所量測的細胞各區域楊氏係數雖略大於文獻中的記載,但亦證明此方法有效且可信,後續研究後將提供神經細胞機械性質量測一個有效的方法。

      In recent years, the fast progress of tissue engineering and neuro-sciences enhances the research of nerve regeneration. In the research of nerve regeneration process, morphological change and biochemical reaction had been investigated widely, but the mechanical properties and effects of physical stimulations to growth of neural cells remains unclear. To achieve this goal, an effective experimental technique should be developed to measure the mechanical properties of living cells.

      In this work, the NIH 3T3 fibroblast was utilized for developing the technique, because mechanical properties of this cell are well known. The technique developed will be applied for neurons in next stage of development. An atomic force microscope system with two control modes was employed to measure the topography and the elastograph of the cell. The Young’s modulus was calculated by using the Hertz model.

      Based on the elastograph the domain of the cell could be separated into three regions, namely, nucleus, cell body and edge. Two experiments are designed to measure the adhesion of 3T3 cells on different substrates and the change of elasticity when the cell is subjected to 10% compression strain.

      The results showed that the Young’s modulus of cell depends on both the mechanical properties and hydrophilism of substrate. Cells are most stiff when cultured on PDMS film, then silicone rubber film and plastic dish. Cells have largest peak adhesion force when cultured on plastic dish, then silicone rubber film and PDMS film. Young’s modulus distribution of compressed cells is directional dependant, i.e., decreasing in transverse section while increasing in the longitudinal section when compared with uncompressed cells.
      
      The trend of our results is in good agreement with the theory of cell biology, although values of the Young’s moduli are higher then those of other studies. An effective and reliable method for measuring the elastograph of living cells has been developed which may be applied for further studies on neural cells.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 ⅩⅠ 符號表 ⅩⅡ 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 4 1-3 研究動機與目的 6 1-4 本文架構 7 第二章 方法與實驗 8 2-1 原子力顯微鏡的設計原理與量測理論 8 2-1-1顯微鏡的發展與沿革 8 2-1-2原子力顯微鏡的成像原理 10 2-1-3原子力顯微鏡的硬體架構 11 2-1-4原子力顯微鏡的成像解析度 13 2-1-5原子力顯微鏡的應用與顯微術的搭配 14 2-2實驗設備與裝置 16 2-2-1原子力顯微鏡工作系統 16 2-2-2原子力顯微鏡探針 17 2-2-3可變形彈性薄膜 19 2-2-4細胞培養程序 20 2-3實驗設計 22 2-3-1細胞彈性量測與Hertz Model 23 2-3-2 AFM量測校正 27 第三章 實驗結果 29 3-1基材表面親疏水性實驗結果 29 3-2基材選擇與細胞機械性質變化 31 3-2-1 3T3培養於培養皿結果 31 3-2-2 3T3培養於PDMS結果 37 3-2-3 3T3培養於矽膠薄膜結果 40 3-2-4 細胞貼附力量測 43 3-3外力與細胞機械性質變化 46 第四章 討論 50 4-1實驗結果討論 50 4-1-1楊氏係數分佈趨勢與細胞構造理論 50 4-1-2基材變化影響分析 53 4-1-3細胞貼附力量分析 57 4-1-4壓縮力量影響分析 59 4-2 AFM量測誤差修正 63 4-3 Hertz Model修正 67 第五章 結論與建議 69 5-1 結論 69 5-2 建議 70 參考文獻 71

    [1] A.K. Harris, P. Wild, D. Stopak “Silicone rubber substrata: A New Wrinkle in the Study of Cell Locomotion”, Science, Vol.208, pp177-179,1980
    [2] A.K. Harris, D. Stopak, P. Wild “Fibroblast traction as a mechanism for collagen morphogenesis”, Nature, Vol. 270, pp249-251, 1981
    [3] T. Oliver, J. Lee, K. Jacobson “Forces exerted by locomoting cells”, Seminars in Cell Biology, Vol.5, pp139-147, 1994
    [4] R. J. Pelham, Y.L. Wang “Cell locomotion and focal adhesions are regulated by substrate flexibility”, PNAS USA, Vol.94, pp13661-13665,1997
    [5] C.G. Galbraith, M.P. Sheetz “A micromachined device provides a new bend on fibroblast traction forces” PNAS USA, Vol.94, pp9114-9118,1997
    [6] M.P. Sheetz, D.P. Felsenfeld, C.G. Galbraith “Cell migration: regulation of force on extracellular-matrix-integrin complexes ” Trends in Cell Biology, Vol.8, pp51-54, 1998
    [7] C. Miller, H. Shanks, A. Witt, G. Rutkowski, S. Mallapragada “Oriented Schwann cell growth on micropatterned biodegradable polymer substrates” Biomaterials, Issue11, pp1263-1269, 2001
    [8] N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S.A. Safran, A. Bershadsky, L. Addadi, B. Geiger “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates” Nature Cell Biology, Vol.3, pp466-472,2001
    [9] U.S. Schwarz, N.Q. Balaban, D. Riveline, L. Addadi , A. Bershadsky, S.A. Safran, B. Geiger “Measurement of cellular forces at focal adhesions using elastic micro-patterned substrates” Material Sciences & Engineering, Vol.23, p387-394, 2003

    [10] John L. Tan, Joe Tien, Dana M. Pirone, Darren S. Gray, Kiran Bhadriraju, and Christopher S. Chen “Cells lying on a bed of microneedles: An approach to isolate mechanical force” PNAS USA, Vol.100, pp1484-1489, 2003
    [11] H.C. Wang, P.G. Clermont, C.P. Yin “Contractility affects stress fiber remodeling and reorientatation” A. of Biomechanical Engineering, Vol.28, pp1165-1171, 2000
    [12] C.P. Yin “Comparison of the effects of cyclic stretching and compression on endothelial morphological responses” ASME, Vol.26, pp545-551, 2004
    [13] M. Radmacher “Measuring the elastic properties of biological samples with the AFM” IEEE Engineering in medicine and biology, 1997
    [14] D. Ricci, M. Tedesco, M. Grattarola “Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy” Microscopy research and technique, Vol.36, pp165-171, 1997
    [15] C. Rotsch, K. Jacobson, M. Radmacher “Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts” PNAS USA, Vol.96, pp921-926, 1999
    [16] A. Mathur et al “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic microscopy” J. of Biomechanics, Vol.34, pp1545-1553, 2001
    [17] S. Sunderland, Nerve and nerve injuries, Churchill Livingstone, Edinburgh and New York, 1978
    [18] M. Mumenthaler and H. Schliack, Peripheral nerve lesions, Georg Thieme Verlag, New York, 1991
    [19] H. Millesi, G. Zoch, and R. Reihsner, “Mechanical properties of perpheral nerves,” Clinical Orthopaedics and Related Research, no.314, pp76-83, 1995
    [20] Y. C. Fung, “Biomechanics: Mechanical Properties of Living Tissues, 2nd ed”, Springer-Verlag, pp.277-292, 1972.
    [21] Steven D. Abramowitch, Savio L-Y. Woo, “A new analytical approach to evaluate the viscoelastic properties of the goat medial collateral ligament using the quasi-linear viscoelastic theory,” ASME 2003 Summer Bioengineering Conference, June 25-29, Florida, U.S.A.
    [22] T. C. Doehring, and I. Vesely, “A new method for estimating quasilinear viscoelastic material parameters using global optimization,” ASME 2003 Summer Bioengineering Conference, June 25-29, Florida, U.S.A.
    [23] J.-L. Fan, J.-Q. Li, M.-S. Ju, and C.-C. K. Lin, “In vivo biomechanical analyses of peripheral nerves,” Proc. 2002 Conference on BME Technology, Kaohsiung, December 14-15, 2002.
    [24] R.J., M.-S. Ju, and C.-C. K. Lin, “Biomechanics of damaged and injured peripheral nerves” Proc. 2003 Conference on BME Technology
    [25] Johannes Diderik van der Waals, ”Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967”
    [26] NT-MDT Probe Scanning Microscope Instruction Manual
    [27] W.F. Ganong, “Physiology”,1989
    [28] Alberts et al, “Molecules of the cytoskeleton” London, 1994
    [29] V.I. Rodinov et al, “Centrosomal control of microtube dynamics” PNAS USA, Vol.96, pp115-120, 1999
    [30] J.V. Small ei al, “Actin filament organization in the fish keratocyte lamellipoium” J. of Biomechanics, Vol.129, pp1275-1286, 1995

    [31] M. Radmacher “Measuring the viscoelastic properties of human platelets with the AFM” Biophysical journal, 1996
    [32] Y. Shen, et al, “Shape recovering of live endothelial cell under atomic force microscopy” Proceedings of IEEE EMBS, Sanfrancisco, 2004

    下載圖示 校內:2008-08-09公開
    校外:2008-08-09公開
    QR CODE