簡易檢索 / 詳目顯示

研究生: 邱筱容
Chiu, Hsiao-Jung
論文名稱: 透過抑制蛋白激酶B減低第一型單純疱疹病毒之感染
Suppression of protein kinase B/Akt reduces herpes simplex virus 1 infection
指導教授: 陳舜華
Chen, Shun-Hua
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 33
中文關鍵詞: 第一型單純疱疹病毒蛋白激酶BmiltefosineNF-κB
外文關鍵詞: Herpes simplex virus 1, protein kinase B, miltefosine, NF-κB
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一型單純疱疹病毒 (herpes simplex virus 1) 感染世界上大多數的人口。此病毒能夠引發致死性的腦炎,並且在給予抗病毒藥物的前提下,仍然能夠有很高的致死率。目前第一線臨床用藥為acyclovir及其衍生物,然而免疫缺失的病人長期服藥使得單純疱疹病毒在病人體內突變成具抗藥性的病毒株。基於以上原因,我們需要研發新的藥物及治療方法來對抗第一型單純疱疹病毒感染。先前有文獻指出,疱疹病毒感染細胞時除了利用本身的蛋白質幫助自身感染以外,也會利用宿主細胞中的分子來幫助病毒感染、複製與傳播。其中,蛋白激素酶B (Akt) 便是第一型單純疱疹病毒的目標之一。病毒會在感染時活化細胞中的Akt,借此幫助病毒感染、散播以及潛伏。本篇我們主要探討Akt抑制劑,miltefosine,對於第一型單純疱疹病毒感染的功效。根據我們的細胞研究結果顯示,第一型單純疱疹病毒感染細胞後確實能夠促進細胞Akt活化,給予感染細胞miltefosine能夠降低細胞內Akt活化 (p-Akt),並且能夠有效降低感染細胞內的病毒量。除此之外,我們的研究結果也顯示miltefosine抑制病毒複製的機制與interferon β無關,可能與miltefosine降低細胞內活化NF-κB有關。在動物實驗中,miltefosine也能有效降低感染野生型或是具抗藥性病毒感染小鼠體內的病毒量,並稍微提升感染小鼠存活率。總和以上實驗結果,我們發現了miltefosine作為抗病毒藥物的潛力。

    Herpes simplex virus 1 (HSV-1) infects the majority of human population worldwide. HSV-1 can induce fatal encephalitis (HSE) with a high incidence compared to other viruses. Acyclovir and related nucleoside analogues are used to treat patients, but the mortality of treated patients remains high. More therapies are needed. During infection, HSV-1 interacts with cellular factors, which can modulate viral infection to affect the severity of virus-induced diseases. Previous studies showed that HSV-1 can activate phosphoinositide 3-kinases/protein kinase B (PI3K/Akt) axis to enhance virus entry, viral nucleocapsid transportation, and protein translation. Furthermore, Akt can reduce type I interferon production by inhibiting cGAS activation through phosphorylation of cGAS. Here, we study the effect of suppressing Akt phosphorylation on HSV-1 infection. Our results showed that suppression of Akt phosphorylation by the inhibitor, miltefosine reduced viral replication in cells and mice. Moreover, miltefosine slightly improved the survival rates of mice infected with HSV-1. To our surprise, the levels of interferon β in infected mice and cells treated with saline or with miltefosine were comparable, suggesting that miltefosine fails to promote the cGAS/STING pathway in HSV-1 infection. In conclusion, our results show the potential of miltefosine as an anti-HSV-1 treatment.

    中文摘要……………………………………………………… I 英文延伸摘要………………………………………………… II 致謝…………………………………………………………… V 目錄…………………………………………………………… VI 圖目錄………………………………………………………… VII 緒論…………………………………………………………… 1 實驗材料與方法……………………………………………… 5 結果…………………………………………………………… 10 討論…………………………………………………………… 15 參考文獻……………………………………………………… 20 附圖…………………………………………………………… 23

    1 Whitley, R. J., Kimberlin, D. W. & Roizman, B. Herpes simplex viruses. Clin. Infect. Dis. 17, 541-553 (1998).
    2 Smith, J. S. & Robinson, N. J. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. Int. J. Infect. Dis. 186, S3-S28 (2002).
    3 Corey, L., Stone, E. F., Whitley, R. & Mohan, K. Difference between herpes simplex virus type I and type 2 neonatal encephalitis in neurological outcome. Lancet. 331, 1-4 (1988).
    4 Whitley, R. J. & Roizman, B. Herpes simplex virus infections. Lancet. 357, 1513-1518 (2001).
    5 Stanberry, L. R., Jorgensen, D. M. & Nahmias, A. J. Herpes simplex viruses 1 and 2. Viral infections of humans 419-454 (1997).
    6 Smith, M. C., Boutell, C. & Davido, D. J. HSV-1 ICP0: paving the way for viral replication. Future Virol. 6, 421-429 (2011).
    7 Whitley, R. J. Herpes simplex virus infections of the central nervous system. Drugs 42, 406-427 (1991).
    8 O'Brien, J. J. & Campoli-Richards, D. M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 37, 233-309 (1989).
    9 Christophers, J., Clayton, J., Craske, J., Ward, R., Collins, P., Trowbridge, M. & Darby, G. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother. 42, 868-872 (1998).
    10 Coen, D. M. & Schaffer, P. A. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discov. 2, 278 (2003).
    11 Amici, C., Belardo, G., Rossi, A. & Santoro, M. G. Activation of IκB kinase by herpes simplex virus type 1 a novel target for anti-herpetic therapy. J Biol Chem. 276, 28759-28766 (2001).
    12 Gregory, D., Hargett, D., Holmes, D., Money, E. & Bachenheimer, S. Efficient replication by herpes simplex virus type 1 involves activation of the IκB kinase-IκB-p65 pathway. J. Virol. 78, 13582-13590 (2004).
    13 Patel, A., Hanson, J., McLean, T. I., Olgiate, J., Hilton, M., Miller, W. E. & Bachenheimer, S. L. Herpes simplex virus type 1 induction of persistent NF-κB nuclear translocation increases the efficiency of virus replication. Virology 247, 212-222 (1998).
    14 Goodkin, M. L., Ting, A. T. & Blaho, J. A. NF-κB is required for apoptosis prevention during herpes simplex virus type 1 infection. J. Virol. 77, 7261-7280 (2003).
    15 MacLeod, I. J. & Minson, T. Binding of herpes simplex virus type-1 virions leads to the induction of intracellular signalling in the absence of virus entry. PLoS One 5, e9560 (2010).
    16 Rider, P. J., Musarrat, F., Nabi, R., Naidu, S. & Kousoulas, K. G. First impressions—the potential of altering initial host-virus interactions for rational design of herpesvirus vaccine vectors. Curr Clin Microbiol Rep 5, 55-65 (2018).
    17 Cheshenko, N., Pierce, C. & Herold, B. C. Herpes simplex viruses activate phospholipid scramblase to redistribute phosphatidylserines and Akt to the outer leaflet of the plasma membrane and promote viral entry. PLoS Pathog. 14, e1006766 (2018).
    18 Cheshenko, N., Trepanier, J. B., Stefanidou, M., Buckley, N., Gonzalez, P., Jacobs, W. & Herold, B. C. HSV activates Akt to trigger calcium release and promote viral entry: novel candidate target for treatment and suppression. FASEB J. 27, 2584-2599 (2013).
    19 Seo, G. J., Yang, A., Tan, B., Kim, S., Liang, Q., Choi, Y., Yuan, W., Feng, P., Park, H. S. & Jung, J. U. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13, 440-449, (2015).
    20 Sundar, S. & Olliaro, P. L. Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3, 733 (2007).
    21 Dorlo, T. P., Balasegaram, M., Beijnen, J. H. & de Vries, P. J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 67, 2576-2597 (2012).
    22 Davar, G., Kramer, M., Garber, D., Roca, A., Andersen, J., Bebrin, W., Coen, D., Kosz‐Vnenchak, M., Knipe, D. & Breakefield, X. Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J. Comp. Neurol 339, 3-11 (1994).
    23 Su, Y., Oakes, J. & Lausch, R. Ocular avirulence of a herpes simplex virus type 1 strain is associated with heightened sensitivity to alpha/beta interferon. J. Virol. 64, 2187-2192 (1990).
    24 Chen, S.-H., Pearson, A., Coen, D. M. & Chen, S.-H. Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J. Virol. 78, 520-523 (2004).
    25 Sharma, A., Bhomia, M., Yeh, T.-J., Singh, J. & Maheshwari, R. K. Miltefosine inhibits Chikungunya virus replication in human primary dermal fibroblasts. F1000Res 7 (2018).
    26 Hsu, M.-J., Wu, C.-Y., Chiang, H.-H., Lai, Y.-L. & Hung, S.-L. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection. Virus Res. 153, 36-43 (2010).
    27 Wagner, M. J. & Smiley, J. R. Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J. Virol. 85, 2803-2812 (2011).
    28 Chuluunbaatar, U., Roller, R., Feldman, M. E., Brown, S., Shokat, K. M. & Mohr, I. Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication. Genes Dev. 24, 2627-2639 (2010).
    29 Liu, X. & Cohen, J. I. The role of PI3K/Akt in human herpesvirus infection: from the bench to the bedside. Virology 479, 568-577 (2015).
    30 Zheng, K., Xiang, Y., Wang, X., Wang, Q., Zhong, M., Wang, S., Wang, X., Fan, J., Kitazato, K. & Wang, Y. Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. MBio. 5, e00958-00913 (2014).
    31 Naghavi, M. H., Gundersen, G. G. & Walsh, D. Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. PNAS 110, 18268-18273 (2013).
    32 Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13, 195 (2012).
    33 Hemmings, B. A. & Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb. Protoc. 4, a011189 (2012).
    34 Hassan, B., Akcakanat, A., Holder, A. M. & Meric-Bernstam, F. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg. Oncol. Clin. N. Am. 22, 641-664 (2013).
    35 Bai, D., Ueno, L. & Vogt, P. K. Akt‐mediated regulation of NFκB and the essentialness of NFκB for the oncogenicity of PI3K and Akt. Int. J. Cancer 125, 2863-2870 (2009).
    36 Medici, M. A., Sciortino, M. T., Perri, D., Amici, C., Avitabile, E., Ciotti, M., Balestrieri, E., De Smaele, E., Franzoso, G. & Mastino, A. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappaB. J Biol Chem 278, 36059-36067 (2003).
    37 Su, A., Qiu, M., Li, Y., Xu, W., Song, S., Wang, X., Song, H., Zheng, N. & Wu, Z. BX-795 inhibits HSV-1 and HSV-2 replication in a JNK/p38-dependent manner without interfering with PDK1activity. Acta Pharmacol. Sin. (2017).

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE