| 研究生: |
許綱哲 Hsu, Kang-Che |
|---|---|
| 論文名稱: |
生物降解性二氧化矽奈米管的製備與其在藥物輸送和磁共振照影之應用 Fabrication of Biodegradable Silica Nanotubes and Their Applications in Drug Delivery and MRI |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 共同指導教授: |
蘇世剛
Su, Shyh-Gang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 二氧化矽 、奈米管 、生物降解 、藥物輸送 、磁共振照影 |
| 外文關鍵詞: | silica, nanotube, biodegradation, drug delivery, MRI |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的數十年間,奈米尺寸的材料已經展現它在藥物傳輸平台上的前途。許多的研究已經顯示,很多的無法降解的無機材料,無論是否有經過修飾,對於人工培養的細胞或是動物模型都沒有毒害性的。即使如此,可以被人體排泄掉的生物降解性奈米材料,其發展還是受到醫護人員的高度期待。
在本篇研究中,製備出pH值依賴性降解的二氧化矽奈米管,該二氧化矽奈米管可以在水中溶解形成矽酸。二氧化矽奈米管可以抵抗酸性條件,但是在pH=8 環境下快速地降解。而且降解速率可以藉由改變二氧化矽奈米管的厚度來調控,越厚的的殼層其被溶解的速率越快。這個降解的特性使得二氧化矽奈米管具有扮演口服用藥載體的潛力。因為二氧化矽奈米材料很容易藉由表面修飾來衍生化,二氧化矽奈米管可以更進一步被開發成磁共振造影的顯影劑與藥物載體。經由腐蝕Gd(OH)3奈米棒而釋放出來的Gd3+離子,與預先修飾在二氧化矽的螯合劑DOTA錯合,生成DOTA-Gd接合之二氧化矽奈米管。最後,將接有DOTA-Gd之二氧化矽奈米管裝填抗癌藥物,可以同時展現出增顯的T1弛緩速率與抗癌活性。
In the past few decades, nanoscale materials have shown promise for drug delivery platform. Considerable studies have shown that many non-degradable inorganic nanomaterials are harmless to cultured cells or in animal models, either in nature or functionalized. However, the development of biodegradable nanomaterials, which can be excreted from
the human body, is still strongly anticipated by medical practitioners.
In this study, a pH-dependence of degradable silica nanotube is fabricated, which is dissolved to bodegradation product silicic acid in water. The silica nanotube is resistant to acidic condition, but degrades rapidly at pH 8. And the degradation rate can be tuned via tailoring the
shell thickness of silica nanotube, which is dissolved more slowly with thicker shell. This feature of degradation makes silica nanotube act as a potential oral-based administration carrier. Because silica-based materials
are readily functionalized via surface modification, silica nanotube can be further developed as MR imaging contrast agent as well as drug carrier. The realeased Gd3+ ions resulting from the etching of Gd(OH)3 nanorod are chelated by chelating agent DOTA, which is pre-modified on silica
nanotube, yielding DOTA-Gd grafted silica nanotube. Finally, the DOTA-Gd grafted silica nanotube which is loaded with anticancer drugs, show enhanced T1 relaxation and anticancer activity simultaneously.
1.http://nano.nstm.gov.tw/ 國立科學工藝博物館 奈米新世界
2.張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局, 2001
3.http://203.64.184.15/teaching/uploads/allpages/0601/22/Chapter% 202.ppt
4.W. Stöber, A. Frank, E. Bohn, J. Colloid. Interface Sci, 1968, 26, 62
5.R. K. Iler, The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry John Wiley & Sons, 1979
6.C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, Chem. Mater. 2008, 20, 756–767
7.C. R. Martin, Chem. Mater. 1996, 8, 1739-1746
8.S. Iijima, Nature 1991, 354, 56-58
9.C. R. Martin, P. Kohli, Nat. Rev. Drug Discovery 2003, 2, 29-37
10.S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Söderlund, C. R. Martin, Science 2002, 296, 2198-2200
11.R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, P. Yang, Nano Lett. 2005, 5, 1633-1637
12.H. Nakamura, Y. Matsui J. Am. Chem. Soc. 1995,117, 2651-2652
13.R. Fan, Y. Wu, D. Li, A. Majumdar, P. Yang, J. Am. Chem. Soc. 2003, 125, 5254-5255
14.Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, J. Hojo, S. Shinkai, Chem. Commun. 1998, 1477-1478
15.J. Jang, H. Yoon, Adv. Mater. 2004, 16, 799-802
16.C. C. Chen, Y. C. Liu, C. H. Wu, C. C. Yeh, M. T. Su, Y. C. Wu, Adv Mater. 2005, 17, 404-407
17.L. Pu, X. Bao, J. Zou, D. Feng, Angew. Chem., Int. Ed. 2001, 40, 1490-1493
18.D. Li, Y. Xia, Adv. Mater. 2004, 16, 1151-1170
19.E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valery, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre, F. Artzner, Nat. Mater. 2007, 6, 434-439
20.周志謂, 科學發展 2008, 431, 16-22
21.I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, V. S. Y. Lin, Advanced Drug Delivery Reviews 2008, 60, 1278-1288
22.I. I. Slowing, B. G. Trewyn, V. S. Y. Lin, J. Am. Chem. Soc. 2007, 129, 8845-8849
23.D.R. Radu, C. Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V. S.Y. Lin, J. Am. Chem. Soc. 2004, 126, 13216-13217
24.I. I. Slowing, B. G. Trewyn, V. S. Y. Lin, J. Am. Chem. Soc. 2006, 128, 14792-14793
25.S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin Angew. Chem., Int. Ed. 2005, 44, 5038-5044
26.J. Lu, M. Liong, J. I. Zink, F. Tammanoi, Small 2007, 3, 1341-1346
27.T. H. Chung, S. H. Wu, M. Yao, C. W. Lu, Y. S. Lin, Y. Hung, C. Y. Mou, Y. C. Chen, D. M. Huang, Biomaterials 2007, 28, 2959-2966
28.D. M. Huang, Y. Hung, B. S. Ko, S. C. Hsu, W. H. Chen, C. L. Chien, C. P. Tsai, C. T. Kuo, J. C. Kang, C. S. Yang, C. Y. Mou, Y. C. Chen, FASEB J. 2005, 19, 2014-2016
29.Y. S. Lin, C. P.Tsai, H. Y. Huang, C. T. Kuo, Y. Hung, D. M. Huang, Y. C. Chen, C. Y. Mou, Chem. Mater. 2005, 17, 4570-4573
30.C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451-4459
31.C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, L. W. Lo, Adv. Funct. Mater. 2009, 19, 215-222
32.S. J. Son, J. Reichel, B. He, M. Schuchman, S. B. Lee, J. Am. Chem. Soc. 2005, 127, 7316-7317
33.A. Webb Introduction to Biomedical Imaging John Wiley & Sons, 2003
34.H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. 2009, 21, 2133-2148
35.E. Tóth, A. É. Merbach, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging John Wiley & Sons: Singarpore, 2001
36.http://www.niea.gov.tw/niea/WATER/W45050B.htm中華民國行政院環境保護署環境檢驗所 水中矽酸鹽檢測方法─鉬矽酸鹽比色法
37.D. F. Boltz, M. G. Mellon, Anal. Chem. 1947, 19, 873-877
38.J. F. Popplewell, S. J. King, J. P. Day, P. Ackrill, L. K. Fifield, R.G. Cresswell, M. L. di Tadac, K. Liu, J. Inorg. Biochem. 1998, 69, 177-180.
39.A. Loaiza-Gil1, P. Rodríguez, W. Velasquez, D.Gómez, B. Fontal, M. Reyes, T. Suárez, Characterization of ultrafine silica supported iron catalysts prepared by the ammonia method, Rev. LatinAm. Met. Mater. 2002, 22, 1
40.M. K. Ghosh, K. L. Mittal, Polyimides: Fundamentals and Application Marcel Dekker: New York, 1996
41.G. Sun, J. Feng, F. Jing, F. Pei, M. Liu, J. Magn. Magn. Mater. 2003, 265, 123-129
42.K. S. Finnie, D. J. Waller, F. L. Perret, A. M. Krause-Heuer, H. Q. Lin, J. V. Hanna, C. J. Barbé, J Sol-Gel Sci Technol 2009, 49, 12-18
43.R. Viitala, M. Jokinen, S. L. Maunu, H. Jalonen, J. B. Rosenholm, J. Non-Cryst. Solids 2005, 351, 3225-3234
44.M. A. Sieber, EJHP Practice 2009, 15, 6, 24-26
45.T. L. Kaneshiro, E. K. Jeong, G. Morrell, D. L. Parker, Z. R. Lu, Biomacromolecules 2008, 9, 2742-2748
46.P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352
校內:2011-07-22公開