簡易檢索 / 詳目顯示

研究生: 劉承翰
Liu, Cheng-Han
論文名稱: 添加過渡金屬元素於鎂基合金之儲氫性能研究
Study on hydrogen storage performance of Magnesium-based Hydrogen Storage Alloy with transition element addition
指導教授: 陳朝光
Chen, Cha`o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 113
中文關鍵詞: 儲氫材料氫化鎂第一原理密度泛函理論
外文關鍵詞: Magnesium Hydride, Mechanical Alloying, First Principle, Density function Theory
相關次數: 點閱:76下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儲氫合金原理為將氫氣以物理或化學的方式儲存於合金之中,因為其零污染且容易取得的特性使之被認為有著高度發展的潛力。其中氫化鎂具有理論儲氫值高且價格低廉等等優異條件,但缺點在於放氫溫度過高(380°C)及吸放氫動力性質差,現今主流的改善方法為在合金中添加過渡元素或過渡金屬氧化物來改善儲氫性質。在本文中,添加氫化鈦、鈀以及二氧化鋯於氫化鎂中作為實驗主體,探討對於儲氫性質的影響,並輔以第一原理法參雜過渡元素於氫化鎂中,研究參雜過渡元素後結構之穩定性。
    實驗部分以氫化鎂為主體,分別添加 TiH2、Pd、ZrO2 ,並以行星式球磨機合成下列三種材料: 2MgH2+TiH2+5wt%ZrO2、2MgH2+Pd+5wt%ZrO2 、2MgH2+TiH2+Pd+5wt%ZrO2 ,球磨後的產物先以XRD分析其晶相以及合成產物,再以SEM觀察其顯微結構,之後再以TGA儀及PCT儀觀測各合金之熱力學及動力學性質。模擬部分則採用第一原理法,計算參雜各過渡元素之後,儲氫合金之態密度以及結構穩定度等各項性質。
    實驗結果可得幾項簡單結論:(1) Pd/Zr化合物推測為增加吸氫量的產物,且有助於在高溫吸氫。而在低溫吸氫部分,則是Ti/Zr化合物影響較大。(2)Mg/Pd以及Pd/Ti化合物會降低放氫溫度,為影響放氫溫度的主因。(4) Van’t Hoff圖可算出三者的解離焓,解離焓越大代表越不易解離,放氫溫度越高,與DSC/TGA分析結果一致。
    模擬結果可得以下結論:(1)合金形成焓負值越大代表結構越穩定,亦即越不易解離出氫氣,與放氫溫度及解離焓趨勢一致。(2)態密度圖中相同能量下的原子軌域雜化可分別對應XRD分析中的新化合物產生。

    Because of the lack of energy, hydrogen storage materials have been highly focused in these days. The research is devoted on Magnesium-Based Hydrogen Storage Alloy with transition element addition, and it’s divided into two parts in the article.
    The first part is about experiments that observing the influence on hydrogen kinetic and thermodynamics performance with TiH2、Pd、ZrO2 and adding into MgH2.By mechanical alloying 2MgH2+TiH2+5wt%ZrO2,2MgH2+Pd+5wt%ZrO2 ,and 2MgH2+TiH2+Pd+5wt%ZrO2 are well mixed respectively. Then, the crystal phases and structure of these samples are analyzed by XRD and SEM, additionally, TGA/DSC and PCT measure the capacity, kinetic cycles and the temperatures of hydrogen abs/des-orption
    The second part calculates the most stable structure of with Ti, Pd, and Zr doped by first principle. The stability of structures after doping decreases, it means the dehydrogenation ability increases, From the electronic structure, the energy gap decreases after doping, it represents that the bonding between Mg and H atoms weakens, and H2 gas dissociation more easily from the magnesium alloys

    中文摘要 i Extended Abstract iii 誌謝 xi 表目錄 xv 圖目錄 xvi 符號表 xxi 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 第二章 背景介紹與文獻回顧 8 2.1 儲氫合金體系的發展 8 2.2 鎂基合金的特性 9 2.3 改善方式 10 2.3.1 過渡金屬元素添加法 11 2.3.2 金屬氧化物及過渡金屬氧化物添加法 12 2.3.3 機械合金法 12 第三章 儲氫合金性質 18 3.1 動力學性質 18 3.2 熱力學性質 18 3.3 Van’t Hoff Equation 21 3.4 儲氫合金之其他相關特性 22 3.4.1 活化(Activation) 22 3.4.2 平台區斜率(Plateau Slope) 22 3.4.3 遲滯(Hysteresis) 23 3.4.4 熱爆(Decrepitation) 23 3.4.5 氣體雜質的影響(Impure Gas) 24 第四章 實驗儀器與原理 30 4.1 實驗材料與儀器 30 4.2 儀器原理 31 4.2.1 熱重分析 31 4.2.2 差式掃描量熱法 31 4.2.3 全自動壓力-成分-溫度測量儀 32 4.2.4 X光繞射 32 4.2.5 掃描式電子顯微鏡 33 4.3 實驗步驟 34 第五章 第一原理及密度泛函理論 41 5.1 第一原理(First Principle) 41 5.2 多電子系統計算 42 5.3 Born-Oppenheimer近似(絕熱近似) 43 5.4 Hartree-Fock近似 44 5.5 密度泛函理論(Density function theory) 46 5.6.1 Hohenberg-Kohn定理 47 5.6.2 Kohn-Sham方法 50 5.6.3 交換相關能之局域密度近似 52 5.6.4 廣義梯度近似法 53 5.6.5 贗勢(Pseudopotential) 54 第六章 實驗結果與討論 55 6.1 XRD晶相分析 55 6.2 SEM實驗結果 56 6.3 DSC曲線及熱重分析 58 6.4 Kinetic Cycle與PCT曲線結果 59 第七章 模擬結果與討論 84 7.1 計算流程與晶體結構 84 7.2 塊體儲氫合金之各項性質 87 7.3 儲氫合金(001)面之各項性質 89 第八章 結論與未來工作 108 8.1 本文總結 108 8.2未來工作與建議 110 參考文獻 111

    [1] Carter, T.J. and Cornish, L.A., Hydrogen in metals. Eng. Fail. Anal, 2001. 8(2): pp. 113-121.
    [2] Durai-Swamy, K., et al., Issues in hydrocarbon fuel Processing. ACS Div. Fuel Chem. Prepr, 2002. 47(2): pp. 540-541.
    [3] D.O.E, Materials-Based Hydrogen Storage.
    [4] Momirlan, M. and Veziroglu, T.N., Current status of hydrogen energy. Renewable and Sustainable Energy Reviews, 2002. 6(1): pp. 141-179.
    [5] 曲新生,陳發林,"氫能技術,"2006
    [6] 王革華,"新能源概論,"2008
    [7] Guoxian, L., Erde, W., and Shoushi, F., Hydrogen absorption and desorption characteristics of mechanically milled Mg35wt.%FeTi1.2 powders. Journal of Alloys and Compounds, 1995. 223(1): pp. 111-114.
    [8] Hydrogen Coordination Group Office , F.E., USA, Hydrogen from natural gas and coal the road to a sustainable energy future. 2003.
    [9] T-Raissi, A., Analysis of Solar Thermochemical Water-Splitting Cycles for Hydrogen Production. 2003.
    [10] 蘇順發,"儲氫材料,"科學發展,vol.483,p.17,2013
    [11] 中華民國核能學會
    [12] Libowitz, G.G., Herbert F. Hayes, and Gibbjr., T.R.P., The System Zirconium–Nickel and Hydrogen. J.Phys.Chem., 1958. 62: pp. 76-79.
    [13] Reilly, J.J. and R. H. Wiswall, J., formation and properties of water from iron titanium hydride. Inorg. Chem., 1974. 13(1): pp. 218-222.
    [14] Zaluska, A., Zaluski, L., and Ström–Olsen, J.O., Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999. 288(1-2): pp. 217-225.
    [15] Stampfer Jr., J.F., Holley Jr., C.E., and Suttle, J.F., The Magnesium-Hydrogen System1-3. J. Am. Chem. Soc., 1960. 82(14): pp. 3504-3508.
    [16] Reiser, A., Bogdanović, B., and Schlichte, K., The application of Mg-based metal-hydrides as heat energy storage systems. International Journal of Hydrogen Energy, 2000. 25(5): pp. 425-430.
    [17] Yao, X.D., et al., Metallic and Carbon Nanotube-Catalyzed Coupling of Hydrogenation in Magnesium. J. Am. Chem. Soc., 2007. 129(50): pp. 15650-15654.
    [18] Lass, E.A., Hydrogen storage in rapidly solidified and crystallized Mg–Ni-(Y,La)–Pd alloys. International Journal of Hydrogen Energy, 2012. 37(12): pp. 9716-9721.
    [19] Chen, B.H., et al., Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs. Journal of Alloys and Compounds, 2013. 568: pp. 78-83.
    [20] Jung, K.S., Lee, E.Y., and Lee, K.S., Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride. Journal of Alloys and Compounds, 2006. 421(1): pp. 179-184.
    [21] Chen, B.H., Chuang, Y.S., and Chen, C.K., Improving the hydrogenation properties of MgH2 at room temperature by doping with nano-size ZrO2 catalyst. Journal of Alloys and Compounds, 2016. 655: pp. 21-27.
    [22] 陳振華、陳鼎,"機械合金化與固液反應球磨",2006
    [23] Ogino, Y., et al., Non-equilibrium phases formed by mechanical alloying of Cr-Cu alloys. Journal of Non-Crystalline Solids, 1990. 117-118(no.Part 2): pp. 737-740.
    [24] 能源與材料 – 地球未來最有潛力的新能源:氫能源.
    [25] 尹 杰,李 谦,冷海燕,"TiFe 系储氢合金性能改善研究进展,"2016
    [26] 吳廣新,"鎂基儲氫合金吸放熱力學和動力學研究.上海大學博士論文"
    [27] 汪卫华, 金属玻璃研究简史. 物理. Vol. 40. 2011.
    [28] Oriani, R.A., The Physical and Metallurgical Aspects of Hydrogen in Metals. Minneapolis, 1993.
    [29] Nist-Msel, Hydrogen Storage Program.
    [30] Yamaguchi, M. and Akiba, E., Electronic and Magnetic Properties of Metals and Ceramics, Part II. VCH, 1994. 3B: p. 333.
    [31] Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999. 293–295: pp. 877-888.
    [32] Zhang, Q.A., et al., Effects of annealing treatment on phase structures, hydrogen absorption–desorption characteristics and electrochemical properties of a V3TiNi0.56Hf0.24Mn0.15Cr0.1 alloy. Journal of Alloys and Compounds, 2000. 305(1-2): pp. 125-129.
    [33] Reilly Jr., J.J. and Wiswall Jr., R.H., Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg. Chem., 1968. 7: pp. 2254-2256.
    [34] 大角泰章,水素吸藏合金.1993
    [35] Martin, M., et al., Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 1996. 238(1): pp. 193-201.
    [36] Kabutomori, T. and Ohnishi, K., Energy Carriers And Conversion Systems. II Metal Hydrides.
    [37] Graetz, J., New approaches to hydrogen storage. Chemical Society Reviews, 2009. 38(1): pp. 73-82.
    [38] 李兰兰, 程., 陶占良,陈军, 储氢材料第一性原理计算的研究进展 2010.
    [39] 國家理論科學研究中心,"第一性原理材料計算初階課程,"2014
    [40] Postnikov, A., Thomas-Fermi method. 1991.
    [41] 江進福,"波函數與密度泛函,"物理雙月刊,vol. 23,no .5,pp.549-553,2001.
    [42] Parr, R.G. and Weitao, Y., Density-Functional Theory of Atoms and Molecules,. Oxford University Press, 1989.
    [43] 单斌,陈征征,陈蓉,"材料学的纳米尺度计算模拟:从基本原理到算法实现"
    [44] 李明憲,"密度泛函理論的方法與應用-CASTEP計算,"2012
    [45] Kohn, W., Nobel Lecture: Electronic structure of matterchar22{}wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): pp. 1253-1266.
    [46] Perdew, J.P. and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 1981. 23(10): pp. 5048-5079.
    [47] Du, A.J., Smith, S.C., and Lu, G.Q., First-Principle Studies of the Formation and Diffusion of Hydrogen Vacancies in Magnesium Hydride. The Journal of Physical Chemistry C, 2007. 111(23): pp. 8360-8365.
    [48] Du, A.J., et al., Ab initio studies of hydrogen desorption from low index magnesium hydride surface. Surface Science, 2006. 600(9): pp. 1854-1859.
    [49] Bogdanović, B., et al., Thermodynamic investigation of the magnesium–hydrogen system. Journal of Alloys and Compounds, 1999. 282(1): pp. 84-92.
    [50] Song, Y., Guo, Z.X., and Yang, R., Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation. Physical Review B, 2004. 69(9): p. 094205.

    下載圖示 校內:2019-07-28公開
    校外:2019-07-28公開
    QR CODE