簡易檢索 / 詳目顯示

研究生: 許耀維
Hsu, Yao-Wei
論文名稱: 以卟吩衍生物形成金屬有機結構物之合成與鑑定
Synthesis and characterization of metal-organic framework based on the porphine derivative
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 75
中文關鍵詞: 有機-無機混成高分子材料金屬-有機網狀結構卟吩膽紅素
外文關鍵詞: metal-organic polymeric materials, metallo-organic framework, porphine, bilirubin
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃是設計及合成可包接膽紅素之功能性有機金屬網狀架構 (metallo-organic framework, MOF)。該材料為一種有機無機混成材料,為有規律之立體結構、對稱性結構以及孔洞性結構,同時,網狀架構具有撓性,供給賓分子進出材料之彈性立體結構中。以不同前驅物合成之有機金屬網狀架構可具有不同之特性,在文獻中亦有不同之應用已發表。
    於本研究中前驅物為卟吩 (porphine) 之衍生物,5,10,15,20-tetra(4-pyridyl)-21H,23H- porphine (TPyP),利用二價鋅進行與前驅物之合成研究探討。合成有機金屬網狀結構之鍵結作用力可來自分子間氫鍵及 TPyP 結構中之卟啉、吡啶官能基之平面 pi-pi 作用力及其金屬之 d 軌域提供之配位建結。TPyP 之立體對稱性為合成有機金屬網狀結構不可或缺的要素,除了提供規則重複排列之結晶結構生成,更提升結晶排列上多樣之可能性。將合成之有機金屬網狀結構 (Zn(II)-TPyP) 進行各項儀器分析,以傅立葉轉換紅外光光譜儀 (Fourier transform infrared spectrometer, FT-IR)、可見光/紫外光光譜儀 (UV/Vis spectrophotometer) 以及歐傑電子能譜儀 (Auger electron spectroscopy, AES) 鑑定分析,確定鋅金屬化合物與 TPyP 形成 Zn(II)-TPyP;由掃描式電子顯微鏡 (scanning electron microscope, SEM)、X-ray 繞射儀 (X-ray powder diffractometer, XRD) 以及小角度 X 光散射儀 (small angle X-ray scattering, SAXS) 觀察其微結構及結晶性,顯現出 Zn(II)-TPyP 成功形成規則之六角形柱狀結構;以熱重分析儀 (thermogravimetry analyzer, TGA) 得到該結構於 250 oC,釋放大量結晶水及溶劑賓分子,而其結構熱穩定約可達600 oC;在吸附實驗中 BET (Brunauer-Emmett-Teller) 分析得到 Zn(II)-TPyP 網狀結構之 BET surface area 大約為 8.41 m2/g,Langmuir surface area大約為 12.57 m2/g,孔洞體積約為 0.036 cm3/g;另外,以螢光光譜儀及電化學分析儀進行測定,該材料皆表現出良好的螢光性質以及導電性。
    在 ZnTPyP 對膽紅素之吸附實驗中,結果指出本研究合成之有機金屬網狀結構化合物確實具有對膽紅素吸附之能力,並顯示未來在臨床應用之可行性及潛力。

    In this work, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP), a compound of porphine series is used as the precursor for the synthesis of hybrid organic-inorganic polymeric materials. It is via the interactions between the organic precursors as well as the coordination of the metal ions with the precursors to achieve a supramolecular conformation both with rigidity and flexibility. It owns geometric regularity from its repeated and symmetric structure (and chains) while, on the other hand, it also owns the property of softness for the inclusion of guest molecules into its flexible framework. Thus, a kind of soft materials with large molecular weights is created. The formation of the metallo-organic framework could be the consequence of the hydrogen bonds, the pi-pi interaction of the porphine-based plane and the coordination bond from d-orbit of the metal compound. The geometric symmetry of the TPyP precursor is an essential feature contributing to the assembly and therefore the formation of the metallic organic crystal. The metal-TPyP as prepared is measured by an FTIR and a UV/Vis spectrophotometer to analyze the bonding between the metal compound and the TPyP precursor. An SEM, an XRD, and an SAXS are altogether used to discover the micro-structure and also the crystallinity of the Zn(II)-TPyP. Thermo-stability is measured by a TGA. It could be concluded from the result that the framework could remain stable until approximately 600 oC. The synthesized Zn(II)-TPyP in this work is further analyzed by a BET. The BET surface area of 8.41 m2/g, the Langmuir surface area of 12.57 m2/g, and the pore volume of 0.036 cm3/g are all obtained. Additionally, Zn(II)-TPyP is confirmed that it indeed shows good performance in both fluorescence property and electro-conductivity.
    Different metal ions are also chosen to be coordinated with the TPyP precursor. Among these MOFs (metal-organic frameworks) being synthesized, ZnTPyP is chosen for the absorption investigation on the bilirubin molecules. Consequently, the results already confirm the inclusion ability of the metal-organic polymers towards bilirubin

    中文摘要 I Abstract II 謝誌 III 目錄 IV 第一章、緒論 1 1.1 卟吩 (Porphine) 1 1.2 金屬-有機架構 (Metal-organic frameworks, MOFs) 3 1.2.1 孔洞材料 3 1.2.2 合成要件 4 1.2.3 自組裝之幾何結構 7 1.2.4 鍵結之作用力 8 1.2.4.1 Porphine 分子間氫鍵 (inter-porphine hydrogen bonds) 之組裝 9 1.2.4.2 金屬配位 (Metal-ligand coordination) 之組裝 10 1.2.4.3 陰離子型之組裝 10 1.2.4.4 有機架橋型 (Organic ligand bridges) 之組裝 10 1.2.5 結構之特性 10 1.3合成方式 12 1.3.1 溶劑加熱法 (Solvothermal) 12 1.3.2 水熱法 (Hydrothermal method) 12 1.3.3 微波溶劑加熱法 (Microwave-assisted solvothermal method) 12 1.3.4 溶劑揮發法 (Solvent evaporation method) 13 1.3.5 溶劑擴散法 (Solvent diffusion method) 13 1.3.6 噴霧乾燥合成法 (Spray-drying method) 13 1.3.7 液相磊晶法 (Liquid-phase epitaxy, LPE, or layer-by-layer approach method) 13 1.3.8 電鍍法 (Electrochemical method) 13 1.3.9 機械力合成法 (Mechanochemical synthesis method) 14 1.3.10 其他之合成方法 (Others) 14 1.4 文獻回顧 14 1.5 研究動機 17 第二章、實驗方法、材料與儀器 19 2.1實驗方法 19 2.1.1 以 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) 和金屬離子形成錯合物 19 2.1.2 金屬有機化合物 (ZnTPyP) 網狀結構之自組裝及再結晶 19 2.1.3 溶劑對合成金屬有機化合物 (ZnTPyP) 立體網狀結構之影響 19 2.1.4 以 ZnTPyP 進行膽紅素之包接 19 2.1.5 以傅立葉紅外線光譜儀 (Fourier transform infrared spectrometer, FT-IR) 分析合成金屬有機物之特徵官能基 19 2.1.6 以紫外/可見光分光光度計 (Ultraviolet/Visible spectrophotometer, UV/Vis) 測定合成化合物溶液之吸光度 20 2.1.7 以熱重分析儀 (Thermogravimetry analyzer, TGA) 分析合成化合物中金屬組成成份 20 2.1.8 以掃描式電子顯微鏡 (Scanning electron microscope, SEM) 分析合成化合物之微結構 20 2.1.9 以X-ray 繞射儀 (X-ray powder diffractometer, XRD) 分析合成化合物之晶體結構 20 2.1.10 以螢光光譜儀 (Fluorescence spectrophotometer, FL) 測定形成化合物之螢光性質 21 2.1.11 以循環伏安法 (Cyclic voltammetry, CV) 掃描形成之 MOF 產物進行電化學分析 21 2.1.12 以歐傑電子能譜儀 (Auger electron spectroscopy, AES) 分析化合物中金屬組成成份 21 2.2實驗藥品 22 2.3實驗儀器 23 第三章、結果與討論 24 3.1有機金屬化合物之合成 24 3.2各項儀器之測定 27 3.2.1 FT-IR 之官能基分析 27 3.2.2 UV/Vis 分光光度計之吸光度測定 30 3.2.3 合成之金屬有機化合物之 TGA 熱重分析 33 3.2.4 SEM 之微結構分析 37 3.2.5 AES 之元素分析 42 3.2.6 XRD 之結晶性分析 45 3.2.7 以 XRD 結晶性分析不同溶劑對立體網狀結構合成之影響 52 3.2.8 BET (Brunauer-Emmett-Teller) 對合成材料之吸附孔洞面積測定 56 3.2.9 螢光性質之探討 58 3.2.10 電化學性質之探討 63 3.2.11 ZnTPyP 對膽紅素之包接探討 64 第四章、結論 69 參考文獻 71

    [1] O.M. Yaghi, G.M. Li, H.L. Li. Selective binding and removal of guests in a microporous metal-organic framework. Nature 378, 703706, 1995
    [2] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa. Three-dimensional framework with channeling cavities for small molecules: {M2(4,4'-bpy)3(NO3)4xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 17251727, 1997
    [3] O.M. Yaghi, H. Li, C. Davis, D. Richardson, T.L. Groy. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474484, 1998
    [4] S. Kitagawa, R. Kitaura, S.I. Noro. Functional porous coordination polymers. Angew. Chem. 43, 23342375, 2004
    [5] B.F. Hoskins, R. Robson. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 59625964, 1989
    [6] B.F. Hoskins, R. Robson. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4',4'-tetracyanotetra phenylmethane]BF4•xC6H5NO2. J. Am. Chem. Soc. 112, 15461554, 1990
    [7] B.F. Abrahams, B.F. Hoskins, J. Liu, R. Robson. The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and X-ray crystal structures of Cd(CN)5/3(OH)1/3∙1/3(C6H12N4), Cd(CN)2∙1/3(C6H12N4), and Cd(Cn)2∙2/3H2O•t-BuOH (C6H12N4 = hexamethylenetetramine) revealing two topologically equivalent but geome- trically different frameworks. J. Am. Chem. Soc. 113, 30453051, 1991
    [8] M. Fujita, Y.J. Kwon, M. Miyazawa, K. Ogura. One-dimensional coordinate polymer involving heptacoordinate cadmium(II) ions. J. Chem. Soc., Chem. Commun. 19771978, 1994
    [9] S. Kitagawa, S. Matsuyama, M. Munakata, T. Emori. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X}∞][M = Cu, X = PF6; M = Ag, X = ClO4; bpen=trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)}∞]. J. Chem. Soc., Dalton Trans. 11, 28692874, 1991
    [10] C.T. Chen, K.S. Suslick. One–dimensional coordination polymers: applications to material science. Coord. Chem. Rev. 128, 293322, 1993
    [11] J.J. Perry IV, J.A. Perman, M.J. Zaworotko. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 14001417, 2009
    [12] S. Horike, S. Shimomura, S. Kitagawa. Soft porous crystals. Nature Chem. 1, 695704, 2009
    [13] S. Kitagawa, M. Kondo. Functional micropore chemistry of crystalline metal complex- assembled compounds. Bullet. Chem. Soc. Jap. 71, 17391753, 1998
    [14] T. Ohmura, A. Usuki, K. Fukumori, T. Ohta, M. Ito, K. Tatsumi. New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-Å square-grid coordi- nation network. Inorg. Chem. 45, 79887990, 2006
    [15] S. Horike, D. Tanaka, K. Nakagawa, S. Kitagawa. Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chem. Commun. 33953397, 2007
    [16] K.M. Barkigia, P. Battioni, V. Riou, D. Mansuy, J. Fajer. Supramolecular self-assembly of a fluorinated Zn porphyrin. Molecular structure of a two-dimensional network of amine-functionalized, hexacoordinated Zn porphyrins. Chem. Commun. 956957, 2002
    [17] H. Krupitsky, Z. Stein, I. Goldberg, C.E. Strouse. Crystalline complexes, coordination polymers and aggregation modes of tetra(4-pyridyl)porphyrin. J. Inclus. Phenom. Macro. Chem. 18, 177192, 1994
    [18] C.J. Medforth, Z. Wang, K.E. Martin, Y. Song, J.L. Jacobsen, J.A. Shelnutt. Self- assembled porphyrin nanostructures. Chem. Commun. 72617277, 2009
    [19] C. Aarné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nature Chem. 5, 203211, 2013
    [20] O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F Evers, D. Zacher, R.A. Fischer, C. Wöll. Step-by-Step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 1511815119, 2007
    [21] O.M. Yaghi, C.E. Davis, G. Li , H. Li. Selective guest binding by tailored channels in a 3-D porous zinc(II)-benzenetricarboxylate network. J. Am. Chem. Soc. 119, 28612868, 1997
    [22] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré. Metal-organic frameworks  prospective industrial applications. J. Mater. Chem. 16, 626636, 2006
    [23] A. Pichon, A. Lazuen-Garaya, S.L. James. Solvent-free synthesis of a microporous metal-organic framework. Cryst. Eng. Comm. 8, 211214, 2006
    [24] L. Liu, H. Wei, L. Zhang, J. Li, J. Dong. Ionothermal synthesis of the metal organic framework compound Cu3(BTC)2. Stud. Surf. Sci. Catal. 174, 459462, 2008
    [25] P.M. Schoenecker, G.A. Belancik, B.E. Grabicka, K.S. Walton. Kinetics study and crystallization process design for scale-up of UiO-66-NH2 synthesis. AIChE J. 59, 12551262, 2013
    [26] R. Ameloot, F. Vermoortele, W. Vanhove, M.B. Roeffaers, B.F. Sels, D.E. De Vos. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382387, 2011
    [27] L. Pan, S. Kelly, X. Huang, J. Li. Unique 2D metalloporphyrin networks constructed from iron(II) and meso-tetra(4-pyridyl)porphyrin. Chem. Commun. 23342335, 2002
    [28] J.S. Hu, Y.G. Guo, H.P. Liang, L.J. Wan, L. Jiang. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 127, 1709017095, 2005
    [29] N. Shi, G. Yin, X. Wei, Z. Xu. Remarkable hexagonal carbon tubes transformed from zinc tetrapyridylporphine. Carbon 47, 527544, 2009
    [30] I. Goldberg. Crystal engineering of porphyrin framework solids. Chem. Commun. 12431254, 2005
    [31] J.L.C. Rowsell, O.M. Yaghi. Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 314, 2004
    [32] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A. Yazaydin, R.Q. Snurr, M. OKeeffe, J. Kim, O.M. Yaghi. Ultrahigh porosity in metal-organic frameworks. Science 329, 424428, 2010
    [33] Y. Gurdal, S. Keskin. Atomically detailed modeling of metal organic framesworks for adsorption, diffusion, and separation of novel gas mixtures. Ind. Eng. Chem. Res. 51, 73737382, 2012
    [34] T.V. Heest, S.L. Teich-McGoldrick, J.A. Greathouse, M.D. Allendorf, D.S. Sholl. Identification of metal-organic framework materials for adsorption separation of rare cases: applicability of ideal adsorbed solution theory (IAST) and effects of inaccessible framework regions. J. Phys. Chem. C 116, 1318313195, 2012
    [35] P.K. Thallapally, J.W. Grate, R.K. Motkuri. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal. Chem. Commun. 48, 347349, 2012
    [36] Y.S. Bae, B.G. Hauser, Y.J. Colón, J.T. Hupp, O.K. Farha, R.Q. Snurr. High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites. Microporous Mesoporous Mater. 169, 176179, 2013
    [37] J. Liu, P.K. Thallapally, D. Strachan. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants. Langmuir 28, 1158411589, 2012
    [38] D. Britt, D. Tranchemontagne, O.M. Yaghi. Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105, 1162311627, 2008
    [39] T.R.C. Van Assche, T. Remy, G. Desmet, G.V. Baron, J.F.M. Denayer. Adsorptive separation of liquid water/ acetonitrile mixtures. Sep. Purif. Tech. 82, 7686, 2011
    [40] M.A. Moreira, J.C. Santos, A.F.P. Ferreira, J.M. Loureiro, F. Ragon, P. Horcajada, K.E. Shim, Y.K. Hwang, U.H. Lee, J.S. Chang, C. Serre, A.E. Rodrigues. Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66. Langmuir 28, 57155723, 2012
    [41] Y. Feng, H. Jiang, S. Li , J. Wang, X. Jing, Y. Wang, M. Chen. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids and Surfaces A: Physicochem. Eng. Asp. 431, 8792, 2013
    [42] J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.B.T. Nguyen, J.T. Hupp. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 14501459, 2009
    [43] S.H. Cho, B.Q. Ma, S.B.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 25632565, 2006
    [44] M. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel. Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. J. Mater. Chem. 17, 38273832, 2007
    [45] R.S. Kumar, S.S. Kumar, M.A. Kulandainathan. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Microporous Mesoporous Mater. 168, 5764, 2013
    [46] C.F. Yuan, Y. Li, P.F. Han, Y.Q. Lai, Z. Zhang, J. Liu. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J. Power Sources 240, 653658, 2013
    [47] Z. Chernia, D. Gill. Flattening of MTPyP adsorbed on laponite. Evidence in observed and calculated UV-vis spectra. Langmuir 15, 16251633, 1999

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE