簡易檢索 / 詳目顯示

研究生: 鄧予安
Teng, Yu-An
論文名稱: 銅與環氧樹脂界面受循環負載下之疲勞裂紋成長
Fatigue Crack Growth on the Interface of Copper and Epoxy under Cyclic Loading
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 界面脫層混合模式相異溫度環氧樹脂
外文關鍵詞: delamination, mixed-moded bending, strain energy release rate, cupper, epoxy, temperature
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微電子產業多採用多層互連結構來提高電子元件中電路的密度,使多層互連結構失效的主要原因之一為環境影響、熱與機械應力導致界面脫層。由於環境溫度對於多層互連結構脫層行為的影響相關知識仍不足,因此要預測互連結構之可靠度,已成為一大挑戰。為了節省研發所需的成本和時間,必須回到物理基本面找出一個可以描述界面脫層的物理模型,以預測產品的可靠度。界面脫層模型包含界面破壞力學理論、界面脫層驅動力之分析與界面破壞韌性及疲勞脫層之實驗分析,本研究發展之量測系統著重在不同溫度下的疲勞實驗,並以銅與環氧樹脂為目標界面,建立其疲勞裂紋成長模型。
    本研究發展一套能配合溫箱使用並且量測材料受混合模式固定相位角下的疲勞成長特性之儀器,透過溫箱內加熱板與熱電偶的搭配來達到高於室溫且穩定環境溫度的目標;本實驗使用彈性基底樑理論,藉此從柔量值(compliance)反推出其相對應的裂紋長度,其中柔量值將由量測試件開口量與作用力來取得,最後經由解析解得到應變能釋放率,再由程式計算出下一周期的施力大小,來確保相位角固定。由加熱溫箱與實驗機台的配合,可得到銅與環氧樹脂界面在高於室溫且受疲勞負載下的疲勞特性常數。透過此實驗所得到的疲勞特性常數配合電子元件中界面缺陷成長模擬,可評估元件在高於室溫下之可靠性,減少研發所需成本與時間。

    In this research, the fatigue growths of epoxy-Cu interface cracks under prescribed mode mixities and temperatures were investigated by using a novel mixed mode bending setup. In this setup, two voice coil motors are used to apply two dissimilar bending end-loads on a double cantilever beam (DCB) specimen. The specimen consists of two oxygen-free Cu strips bonded by epoxy. By using an beam-on-elastic-foundation-theory based analytical formula and the compliance method, the crack length and the strain energy release rate were calculated from the opening displacement of beam and the applied end forces. The control program calculates the crack length and phase angle for adjusting the applied end loads to maintain the prescribed mode mixity throughout the fatigue experiment. The temperature environment was kept constant by using a proportional-integral- derivative (PID) controller. By post-processing the experiment results, the subcritical fatigue growth responses of the Cu-epoxy interface were obtained. It was found that the steady-state cyclic fatigue delamination growth rate displays a power-law dependence on the applied strain energy release rate range. As the temperature increases, lower strain release rate is needed to maintain the same crack growth rate than in the lower temperature condition. The temperature-dependent crack growth model can be combined with delamination driving forces obtained for real structures containing the specific interface of interest to estimate the fatigue crack growth behavior and the corresponding structural reliability.

    摘要 I Abstract II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVII 符號說明 XVIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究目的與方法: 5 1.4論文架構 6 第二章 理論背景 7 2.1界面破壞力學理論 7 2.2混合模式彎矩問題 8 2.3界面疲勞裂紋成長 15 第三章 實驗機台設置 20 3.1 實驗機台介紹 20 3.2 實驗控制電腦 23 3.3 美國國家儀器公司 C系列模組 24 3.4 致動器與感測器 24 3.5 控制程式設計 24 3.5.1 系統工作分配 25 3.5.2 實驗主程式 27 3.5.3 主程式架構 30 3.5.4 數學運算副程式 32 第四章 銅-環氧樹脂界面疲勞破壞分析 34 4.1 雙懸臂樑試件準備 34 4.2實驗步驟 39 4.3實驗數據處理 40 4.4不同相位角的實驗結果比較 44 4.5不同溫度下的模式一實驗結果比較 52 第五章 結論與未來研究方向 60 5.1 結論 60 5.2未來研究方向 62 參考文獻 63 附錄 LabVIEW程式內容 69

    [1] X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 18, pp. 150-153, 1995.
    [2] J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solids and Structures, vol. 33, pp. 65-78, 1996.
    [3] M. W. Lane, R. H. Dauskardt, Q. Ma, H. Fujimoto and N. Krishna, “Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects,” MRS proceedings, vol. 563, pp. 251-256, 1999.
    [4] S. Benayoun, L. Fouilland-Paille and J. J. Hantzpergue, “Microscratch test studies of thin silica films on stainless steel substrates,” Thin Solid Films, vol. 352, pp. 56-166, 1999.
    [5] W. K. Szeto, M. Y. Xie, J. K. Kim, M. M. F. Yuen, P. Tong and S. Yi, “Interface failure criterion of button shear test as a means of interface adhesion measurement in plastic packages,” Electronic Materials and Packaging, 2000. (EMAP 2000). International Symposium on, pp. 263-268, 2000.
    [6] J. Yang and O. Paul, “Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes,” Sensors and Actuators A: Physical, Vol. 139, pp. 330-336, 2002.
    [7] Y. T. Yen and L. Y. Cheng, “Study peeling strength of tape carrier packaging and chip scale packaging,” Sensors and Actuators A: Physical, vol. 139, pp. 330-336, 2007.
    [8] James R. Reeder and John R. Crews Jr, “Mixed-mode bending method for delamination Testing,” AIAA Journal vol. 28, pp.1270-1276, 1990.
    [9] F. Ducept, P. Davies and D. Gamby, “An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites,” Composites: Part A, vol. 28A, pp. 719-729, 1997.
    [10] J. Guzek, H. Azimi and S. Suresh, “Fatigue crack propagation along polymer-metal interface in microelectronic packages,” IEEE Transactions on Components and Packaging Technology, vol. 20, pp. 496-504, 1997.
    [11] S. Y. Kook, J. M. Snodgrass, A. Kirtikar and R. H. Dauskardt, “Adhesion and reliability of polymer inorganic interfaces,” Journal of Electronic Packaging, vol.120, pp. 328-335, 1998.
    [12] F. Ducept, P. Davies and D. Gamby, “Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint,” International Journal of Adhesion & Adhesives, vol. 20, pp. 233-244, 2000.
    [13] H. Miyagawa, C. Sato and K. Ikegami, “Fracture toughness evaluation for multidirectional CFRP by the Raman coating method,” Composites Science and Technology, vol. 60, pp.2903-2915, 2000.
    [14] A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimens,” Engineering Fracture Mechanics, vol. 71, pp. 859-871, 2004.
    [15] M. Kolluri, M. H. L. Thissen, J. P. M. Hoefnagels, J. A. W. van Dommelen and M. G. D. Geers, “In-situ characterization of interface delamination by a new miniature mixed mode bending setup,” International Journal of Fracture, vol. 158, pp. 183-195, 2009.
    [16] M. Kolluri, J. P. M Hoefnagels, J. A. W van Dommelen and M. G. D. Geers, “An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses,” Journal of Physics D: Applied Physics, vol. 44, pp. 5-34, 2011.
    [17] W. Chan and A. Wang, “Free-edge delamination characteristics in S2/CE9000 glass/epoxy laminates under static and fatigue loads. In: Lagace PA, editor.
    Composite materials: fatigue and fracture,” ASTM STP 1012, vol. 2. Philadelphia: American Society for Testing and Materials, pp. 270-95, 1989.
    [18] A. Sjögren and LE. Asp, “Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading,” International Journal of Fracture, vol. 24, pp. 179–84, 2002.
    [19] P. Coronado, A. Arguelles, J. Vina, V. Mollon and I. Vina, “Influence of temperature on a carbon–fibre epoxy composite subjected to static and fatigue loadingunder mode I delamination,” International Journal of Solids and Structures, vol. 49, pp. 2934–40, 2012.
    [20] Y. Shindo, A. Inamoto, F. Narita and K. Horiguchi, “Mode I fatigue delamination growth in GFRP woven laminates at low temperatures,” Engineering Fracture Mechanics, vol. 73, pp. 2080–90, 2006.
    [21] Y. Shindo, T. Takeda, F. Narita, N. Saito, S. Watanabe and K. Sanada, “Delamination growth mechanisms in woven glass fiber reinforced polymer composites under mode II fatigue loading at cryogenic temperatures,” Composites Science and Technology, vol. 69, pp. 1904–11, 2009.
    [22] Y. Shindo, M. Miura, T. Takeda, N. Saito and F. Narita, “Cryogenic delamination growth in woven glass/epoxy composite laminates under mixed-mode I/II fatigue loading,” Composites Science and Technology, vol. 71, pp. 647–52, 2011.
    [23] CD. Rans, RC. Alderliesten and R. Benedictus, “Predicting the influence of temperature on fatigue crack propagation in fibre metal laminates,” Engineering Fracture Mechanics, vol. 78, pp. 2193–201, 2011.
    [24] DA. Burianek, SM. Spearing, “Delamination growth from face sheet seams in cross-ply titanium/graphite hybrid laminates,” Composites Science and Technology, vol. 61, pp. 261–9, 2001.
    [25] 郭献駿,材料界面受混合模式作用下疲勞裂紋成長特性量測系統之建立,國立成功大學機械工程學系,碩士論文,2014。
    [26] 呂威,鋁-環氧樹脂界面裂紋受混合模式負載之疲勞裂紋成長,國立成功大學機械工程學系,碩士論文,2016。
    [27] National Instrument, LabVIEW Real-Time Course Manual, 2012
    [28] 陳昱仁,銅與環氧樹脂封膠界面受循環負載下之疲勞裂紋成長,國立成功大學機械工程學系,碩士論文,2017。
    [29] A. A. Griffith, “The phenomena of rupture and flow in solids.,” Philosophical Transaction, vol. 221, pp. 163-198, 1920.
    [30] G. R. Irwin and J. A. Kies, “Critical Energy Rate Analysis of Fracture Strength,” Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.
    [31] M. F. Kanninen, “An argumentted double beam model for studying crack propagation and arrest,” International Journal of Fracture, vol. 9, pp. 83-92, 1973.
    [32] 王建智,含邊緣裂紋樑受混合模式彎矩之破壞力學分析,國立成功大學機械工程學系,碩士論文,2012。
    [33] P. C. Paris and F. Erdogan, “A critical analysis od crack propagation laws,” Journal of Basic Engineering, vol. 85, pp. 528-534, 1963.
    [34] 朱書偉,聚醯亞胺與氮化矽薄膜界面之疲勞裂紋成長行為,國立成功大學機械工程學系,碩士論文,2010。
    [35] National Instrument, LabVIEW FPGA Course Manual, 2012
    [36] National Instrument, Labview Core2 Course Manual, 2014
    [37] F. E. Penado, “A Closed Form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer,” Journal of Composite Materials, vol. 27, pp. 383-407, 1993.
    [38] C. Rans, R. Alderliesten and R. Benedictus, “Misinterpreting the results: How similitude can improve our understanding of fatigue delamination growth,” Composites Science and Technology, vol. 71, pp. 230-238, 2011.

    下載圖示 校內:2023-08-11公開
    校外:2023-08-11公開
    QR CODE