簡易檢索 / 詳目顯示

研究生: 施建宇
Shih, Chien-Yu
論文名稱: 含硫416及430F不銹鋼於短時間高溫暴露下的表面形貌及化學反應之研究
A study on surface morphology and chemical reaction of sulfur- containing 416 and 430F stainless steels with short- term high temperature exposure
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 含硫不銹鋼416不銹鋼430F不銹鋼硫化物高溫液化沿晶破裂
外文關鍵詞: Sulfur-containing stainless steel, AISI 416 SS, AISI 430F SS, Sulfides, Liquefaction, Intergranular crack
相關次數: 點閱:124下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討含硫麻田散體系416及肥粒體系430F不銹鋼在高溫熱鍛溫度模擬試驗下之表面形貌變化及化學反應之影響,並以低硫的麻田散體系410及肥粒體系430不銹鋼作為比較對照組。研究中利用在管型爐中及共軛焦掃描顯微鏡(HT-CLSM)內作為兩種試驗方式,後續並利用掃描式電子顯微鏡 (SEM) 觀察硫化物與基材間在試驗前與高溫短時間暴露後影像比較的相互關係,並輔以能量散射光譜儀(EDS)分析表面腐蝕產物的化學成分。試驗結果顯示,含硫的416及430F不銹鋼中在1050 oC、1150 oC及1250 oC且高溫大氣暴露下且分別持溫60秒、120秒及80秒,表面以硫化物作為化學反應初始成核的位置,隨著溫度及時間的增加與增長,硫化物逐漸被轉變為氧化物,並觀察到有明顯錳離子以硫化物為中心向外拓展的現象發生,推測其中一個原因為在高溫時有發生物質間的共晶反應,進而造成在熱鍛溫度範圍下提早液化有關,而原硫化物存在位置生長較快速,逐漸形成富錳的結瘤狀(nodule)組織,代表含硫416及430F不銹鋼除了表面有化學性質的變化外,也有物理性尺寸的改變;相較於低硫的410及430不銹鋼表面化學組成及氧化形貌則較為一致且均勻。
    此外,在1050 oC、1150 oC及1250 oC且分別持溫一分鐘的共軛焦模擬試驗結果顯示430不銹鋼及含硫430F不銹鋼在試驗後皆能觀察到明顯晶界組織,對於含硫430F不銹鋼而言,若有硫化物富集時,晶界明顯分離並產生沿晶破裂,更是有硫化物集中於裂縫底端;410及416不銹鋼在試驗後會有板狀麻田散體組織的出現,但對於含硫416不銹鋼而言,硫化物的存在對於晶界的影響較不顯著,可能與其組織較430F複雜有關。
    由上述兩種試驗方法的分析結果對其是否有液化以及發生沿晶破裂的機制更是後續值得將加以探討的課題。

    In this study, we analyzed the surface morphology and chemical reaction of sulfur-containing 416 SS and 430F SS in 1050 oC to 1250 oC and short- term exposure for 60 seconds to 180 seconds, comparing with low sulfur- containing 410 SS and 430 SS. Surface morphology and chemical reaction were test in furnace and High Temperature Confocal Laser Scanning Microscopy (HT-CLSM). Scanning electron microscopy (SEM) for surface morphology examination and Energy Dispersive Spectrometer (EDS) for corrosion product identification. The experimental results showed that the surface chemical reaction start react at the sulfides. Increasing with time and temperature, manganese ion will diffuse outward around the sulfides. In HT- CLSM observe grain boundary separate phenomenon and have intergranular crack when sulfides were precipitate on the grain boundary. In addition, we can also see the sulfides were penetrated in the bottom of the crack. The mechanism of liquefaction and intergranular crack are discussed.

    摘要 I Extend Abstract III 誌謝 XII 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 前言 1 第二章 文獻回顧與背景資料 3 2.1 材料簡介 3 2.1.1 含硫易削鋼 3 2.1.2 含硫易削鋼常見之腐蝕行為 4 2.2 含硫不銹鋼中硫化物基本性質 5 2.2.1 硫化物種類 5 2.2.2 硫化物形貌與結構 7 2.2.3 硫化物生成機制 8 2.3 硫化物對於鐵及鐵基高溫性質之影響 9 2.3.1 硫化物對於高溫表面液化之影響 9 2.3.2 硫化物對於高溫表面反應之影響 10 2.3.3 硫化物對於高溫晶界之影響 11 第三章 研究方法與步驟 22 3.1 實驗材料 22 3.1.1 基材化學成分分析 22 3.1.2 基材微觀組織觀察 22 3.2 硫化物基本性質分析 23 3.2.1 硫化物尺寸大小及分佈 23 3.2.2 硫化物化學組成分析 23 3.3 高溫模擬試驗 24 3.3.1 短時間恆溫模擬試驗 24 3.3.2 共軛焦雷射掃描顯微鏡 25 第四章 結果與討論 33 4.1 材料基本性質分析 33 4.1.1 基材化學成份及金相組織分析 33 4.1.2 硫化物尺寸大小及分佈 34 4.2 短時間高溫模擬試驗分析 35 4.2.1 肥粒體系430及430F不銹鋼 36 4.2.2 麻田散體系410及416不銹鋼 38 4.3 共軛焦雷射掃描顯微鏡結果 39 4.3.1 肥粒體系430及430F不銹鋼 39 4.3.2 麻田散體系410及416不銹鋼 42 第五章 結論 84 參考文獻 86

    [1] “Stainless steel for machining, Designer’s Handbook”, Specialty Steel Industry of North America, February 9, 1995.
    [2] “Stainless steel for machining, Designer’s Handbook”, American Iron and Steel Institute (AISI), Washington, 2000, pp.60-66.
    [3] N. Anmark, A. Karasev and P.G. Jonsson, “The effect of Different Non- Metallic Inclusions on the Machinability of the Steels”, Materials, Vol. 8, 2015, pp.751-783
    [4] G. F. V. Vort, “Applied Metallography”, Van Nostrand Reinhold Company Inc., New York, 1986, pp. 211-236.
    [5] N. E. Luiz and A. R. Machado, “Development trends and review of free- machining steels”, Proc. IMechE, Vol. 222, 2008, pp. 347-360.
    [6] J. Maciejewski, “The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components”, J. Fail. Anal. And Preven, Vol. 15, 2015, pp. 169-178.
    [7] H. Yaguchi, “Effect of MnS Inclusions Size on Machinability of Low-Carbon, Leaded, Resulfurized Free-Machining Steel”, J. Applied Metal Working, Vol. 4, No. 3, 1986, pp. 214-225
    [8] I. I. Reformatskaya and L. I. Freiman, “Precipitation of Sulfide Inclusions in Steel Structure and Their Effect on Local Corrosion Processes”, Protection of Metals, Vol. 37, No. 5, 2001, pp.459-464.
    [9] M. Smialowski, Z. Szklarska-Smialowska, M. Rychcik and A. Szummer, “Effect of Sulphide Inclusions in a Commerical Stainless Steel on the Nucleation of Corrosion Pits”, Corrosion Science, Vol. 9, 1969, pp. 123-125
    [10] A. W. Jonnes, “Effect of Sulfide Inclusions in Austenite Stainless Steel on the Initiation of Pitting in Base Metal and Heat Affected Zone after Welding (master thesis)”, Norwegian University of Science and Technology, June 14, 2012.
    [11] A. J. Sedirks, “Role of Sulfide inclusions in Pitting and crevice corrosion of stainless steel”, International Metals Reviews, Vol. 28, No. 5, 1983, pp. 295-307.
    [12] Koang-Hwa Kung, “A Study of Hot Shortness in Steels (Master’s thesis)”, University of Missouri, Rolla, 1965.
    [13] D.C Hilty和W. Crafts, “Manganese Modification of the Fe-S-O System”, Journal of Metals, 1954, pp. 959-967.
    [14] W. P. Sun and J. J. Jonas, “Influence of dynamic precipitation on grain boundary sliding during high temperature creep”, Acta metall. Mater, Vol. 42, No. 1, 1994, pp. 283-292.
    [15] A. F. Liu, “Mechanics and Mechanism of Fracture: An Introduction”, ASM International, Ohio, 2005, p.76
    [16] J. C. Lippold, “Welding Metallurgy and Weldability”, John Wiley and Sons, New Jersey, 2015, p.152.
    [17] R. N. Stevens, “Grain Boundary Sliding and Diffusion Creep”, Surface Science, Vol. 31, 1972, pp. 543-565.
    [18] C. L. Briant and S. K. Banerji, “Intergranular failure in steel: the role of grain boundary composition”, International Metals Reviews, No. 4, 1978, pp.164-199
    [19] D. A. Stephenson and J. S. Agapiou, “Metal Cutting Theory and Practice”, 3rd edition, CRC press, Boca Raton, 2016, pp. 650-652
    [20] K. Iwata, “The effect on machinability of infinitesimal amounts of element in steel”, Proc. Int. Conf. on production technology. Ins. of Eng., Vol.74, No. 3, p.183, 1974.
    [21] “Article: Free machining stainless steels grades”, British Stainless Steel Association, http://www.bssa.org.uk/topics.php?article=84.
    [22] M. E. Merchant and N. Zlatin, “Basic Reasons for Good Machinability of Free Cutting Steels”, Trans. ASM, Vol. 41, 1949, p.647.
    [23] M.C. Shaw, E. Usui, and P. A. Smith, “Free Machining Steel, III: Cutting Forces, Surface Finish, and Chip Formation,” Trans. ASME, Vol. B83, 1961, p. 181
    [24] N. A. Haroun, “Theory of Inclusion controlled grain growth”, Journal of Material Science, Vol. 15, 1980, pp. 2816-2822
    [25] W. P. Sun, “Measurement and Analysis of MnS Precipitation in Electrical Steel (Doctor’s Dissertation)”, McGill University, Montreal, January, 1991.
    [26] L. Guo, H. Roelofs, M. I. Lembke and H. K. D. H. Bhadeshia, “ Effect of manganese sulfide particle shape on the pinning of grain boundary”, Material Science and Technology, Vol. 33, Iss. 8, 2017, pp. 1013-1018.
    [27] E. G. Webb and R. C. Alkire, “Pit Initiation of Single Sulfide Inclusions in Stainless Steel”, Journal of The Electrochemical Society, Vol. 149, No. 6, 2002, pp.272-279.
    [28] G. S. Eklund, “On the Initiation of Crevice Corrosion on Stainless Steel”, Journal of The Electrochemical Society, Vol. 123, No. 2, 1976, pp. 170-173.
    [29] V. D. Sadovskii, A. B. Kutin and N. M. Gerbikh, “Effect of the sulfide phase on the properties of steel after heat treatment”, Institute of Metal Physics, No. 11, 1987, pp. 15-19..
    [30] M. Henthorne, “ Corrosion of Resulfurized Free- Machining Stainless Steels”, Corrosion, Vol. 26, No. 12, 1970, pp.511-528.
    [31] “Article: Desulfurization of steel”, Substances and Technology, http://www.substech.com/dokuwiki/doku.php?id=desulfurization_of_steel
    [32] J. Oudar and N. Barbouth, “ Solubility of Sulfur in Iron- Chromium Alloys”, Scripta Metallurgica, Vol.15, 1981, pp.41-43
    [33] S.R. Shatynski, “The Thermochemistry of Transition Metal Sulfides”, Oxidation of Metals, Vol. 11, No. 6, 1977.
    [34] S. S. Yen, “A study of sulfide inclusions in medium carbon steels (Master’s thesis)”, University of Missouri, Rolla, 1965.
    [35] 田村博,渡辺健彦 (1974 )。高張力鋼溶接熱影響部における粒界液化割れの 機構 ( 47-56頁)。溶接学会誌。第43巻,第4号。
    [36] R. Kiessling, S. Bergh and N Lange, “Analysis of Slag Inclusions in Plain Carbon Steels by the Electrode-probe Micro-Analyzer”, J. Iron Steel Ins., Vol. 200, 1962, pp.914-961
    [37] J. R. Davis, “Stainless Steel”, ASM International Handbook Committee, Ohio, 1999, p.316
    [38] C. E. Sims and F. B. Dahle, Trans. Amer. Found. Soc., Vol. 46, 1938, p.65.
    [39] Y. Ito, N. Masumitsu and K. Matsubara, “Formation of Manganese Sulfide in Steel”, Transaction ISIJ, Vol. 21, 1981, pp.477-484.
    [40] K. Oikawa, H. Mitsui and K. Ishida, “Phase Equilibria and Microstructure of sulfide in Steel”, 電氣製鋼, Vol. 75, No. 2, 2004, pp. 113-120.
    [41] L. Zhang and W. Pluschkell, “Nucleation and growth kinetics of inclusions during liquid steel deoxidation”, Ironmaking and Steelmaking, Vol. 30, 2013, pp. 106-110.
    [42] D. R. Askeland, “ The Science and Engineering of Materials”, 3rd edition, PWS, UK, 1996, pp.216-220.
    [43] L. Zhang, “Nucleation, Growth, Transport and Entrapment of inclusions During Steel Casting”, JOM, Vol. 65, No. 9, 2013, pp. 1138-1144.
    [44] 田村博,渡辺健彦(1973)。高張力鋼溶接熱影響部における粒界液化割れの機構(第1報)(966-977頁)。溶接学会誌。第42巻,第10号。
    [45] 田村博,渡辺健彦(1974)。高張力鋼溶接熱影響部における粒界液化割れの機構(第2報)(47-56頁)。溶接学会誌。第43巻,第4号。
    [46] P. Waldner, “Thermodynamic Modeling of the Cr-Fe-S System”, Metallurgical and Materials Transactions A, 45A (2014) 798
    [47] Y. A. Chang and W.T. Tsai, “Phase-Relationships and Thermodynamics of Fe-Cr-S System”, J. of Metals, 31(12) (1979) 80
    [48] S. Mrowec and K. Przybylski, “Transport Properties of Sulfide Scales and Sulfidation of Metals and Alloys”, Oxidation of Metals, Vol. 23, Nos. 3/4, 1985, pp. 107-139.
    [49] T. Rosenqvist, “Principles of Extractive Metallurgy”, 2nd edition, Tapir Academic Press, Trondheim, 2004, p.216.
    [50] 柯賢文與王朝正,”腐蝕及其防治”, 全華圖書股份有限公司,台北市,民國95年,第272頁。
    [51] N. H. Heo etal., “Dependence of Elevated Temperature Intergranular Cracking on Grain Size and Bulk Sulfur Content in TP347H Austenitic Stainless Steels”, ISIJ International, Vol. 56, No. 6, 2016, pp.1091-1096.
    [52] S. Drazic, N. Sladoje and J. Lindblad, “Estimation of Feret’s diameter from pixel coverage representation of a shape”, Pattern Reconition Letters, Vol. 80, 2016, pp.37-45.
    [53] M. H. Kang, J. S. Lee, Y. M. Koo, S. J. Kim and N. H. Heo, “Correlation between MnS precipitation, sulfur segregation, kinetics, and hot ductility in C-Mn steel”, Metallurgical and Materials Transaction A, Vol. 45A, 2014, pp. 5295-5299.
    [54] 林世安,矽含量對不銹鋼之高溫氧化性質影響研究,國立成功大學,民國85年6月,第90 - 99頁
    [55] “Article: Diffusion in iron”, Science, https://www.tf.uni-kiel.de/matwis/amat/iss/kap_5/illustr/s5_2_3d.html
    [56] R. K. Wild, “High temperature oxidation of austenitic stainless steel in low oxygen pressure”, Corrosion Science, Vol. 17, 1977, pp.87-104

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE