| 研究生: |
林柔昕 Lin, Jou-Hsin |
|---|---|
| 論文名稱: |
電動汽機車旅運需求電力供應設施規劃 The Refueling Location Problem For Electric Vehicles |
| 指導教授: |
林正章
Lin, Cheng-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 節能減碳 、電動車輛 、場站規劃 |
| 外文關鍵詞: | Energy Savings, Electric Vehicles, Facility Location Models |
| 相關次數: | 點閱:168 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運輸部門所排放的二氧化碳占整體量約四分之一,推行電動車輛達到節能減碳之目標勢在必行。然而以往研究僅探討單一用路者的一般旅次需求,為此,本研究考量相同起迄點間之多人次旅運,會有不同出發時間差異,以及考慮充電設施容量有限等限制,形成一個用路者時間差異,具容量限制之時間動態電力供應設施規劃問題。
本研究提出了五種模式建構,分別為以線性路線為主的「固定停留時間線性路徑模式」、「彈性停留時間線性路徑模式」、「充電時間組合線性路徑模式」與「充電時間計價線性路徑模式」;第五種則是具迴圈路線的「充電時間計價迴圈路徑模式」,以整體成本最小化建構數學通式。
在實證分析中,本研究以「充電時間計價迴圈路徑模式」為主,並選定澎湖作為實證區域,時空路網圖設定兩組用路者以及四個停靠點,並利用分支界限法進行求解。研究結果顯示,在用路者願意等待的情況下,設置者並不需要在所有旅行停靠點皆設置充電站所;而用路者在旅運行為中只會充足足夠完成旅程的最經濟充電量,亦即兩者能達成社會的最小成本。此外,在敏感度分析中,顯示若電動機車的耗費電力比例越大、充電時間轉成電量比例越低,對充電站的需求便會越高。
The transportation sector discharged a quarter of carbon dioxide (CO2) emission in all sectors. Promoting the usages of electric vehicles is one of the energy policies to reduce the carbon dioxide emission. The electric refueling infrastructure is one of key system components for successful policy implementation. In this research, we study a multiple departure-times refueling facility location planning problem to design a capacitated refueling infrastructure to minimize the sum of investment and refueling costs.
We propose a space-time directed network for refueling facility location planning problem. We formulate the problem in five distinguished mathematical models with respect to different user behavior assumptions. The constant stop time model assume an identical stop time for all users. The flexible stop time model allows stop time variations by users. The non-stop refueling model studies continuous refueling while the refueling charge model considers additional refueling charges. All above models assume trips are linear without repetitive stops. Thus, we formulate the refueling facility network design with tours to study travel tours with repetitive stops.
We used Penghu for model validations and numerical experiment. With two departure-times and four scenic sites, the computational result showed that the infrastructure requires fewer facilities if allowed various stop times. In addition, we conducted sensitivity analyses on fuel consumption and recharge rates. It showed that the lower fuel consumption and the higher recharge rates, the fewer is the number of refueling facilities.
一、中文部分
1.拓墣產業研究所(2009),從綠色車輛角度探究電動車發展契機,拓墣科技,台灣。
2.張四立、廖林詮(2009),環境變遷壓力下運輸部門的挑戰,能源報導,頁8-10。
3.許家興(2009),「電動車電池類型與電池基礎介紹」,車輛研測資訊,頁13-18。
4.陳志洋(2011),電動車充電設施商發展現況,機械工業技術與產業資訊專輯,334期,頁40-49。
5.陳宛宜(2009),「消費者購買環保電動機車屬性偏好之研究」,國立成功大學交通管理科學研究所碩士論文。
6.陳清泉(2001),21世紀的綠色交通工具,牛頓出版股份有限公司,台北市。
7.戴玉珍(2005),「台灣電動機車發展歷程與現況分析」,電動車輛產業資訊專刊,頁2-4。
二、英文部分
1.Andersen, P. H., Mathews, J. A., & Rask, M. (2009). Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 37(7), 2481-2486.
2.Avella, P., Sassano, A., & Vasil'ev, I. (2007). Computational study of large-scale p-Median problems. Mathematical Programming, 109(1), 89-114.
3.Berman, O., & Drezner, Z. (2008). The p-median problem under uncertainty. European Journal of Operational Research, 189(1), 19-30.
4.Berman, O., Larson, R.C., & Fouska, N. (1992). Optimal location of discretionary service facilities. Transportation Science, 26(3), 201–211.
5.Brown, S., Pyke, D., & Steenhof, P. (2010). Electric vehicles: The role and importance of standards in an emerging market. Energy Policy, 38(7), 3797-3806.
6.Buckley, P. (2009). Promoting the use of electric vehicle since 1967, Electric Auto Association, 41(8), 3-51.
7.Church, R. L. (2008). BEAMR: An exact and approximate model for the p-median problem. Computers & Operations Research, 35(2), 417-426.
8.Church, R. L., & ReVelle, C. S. (1976). Theoretical and Computational Links between the p-Median, Location Set-covering, and the Maximal Covering Location Problem. Geographical Analysis, 8(4), 406-415.
9.Hakimi, S. L. (1964). Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. Operations Research, 12(3), 450-459.
10.Hodgson, M. J. (1990). A Flow-Capturing Location-Allocation Model. Geographical Analysis, 22(3), 270-279.
11.Huang, Y.-H., & Wu, J.-H. (2009). Energy Policy in Taiwan: Historical Developments, Current Status and Potential Improvements. Energies, 2(3), 623-645.
12.Kuby, M., & Lim, S. (2005). The flow-refueling location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2), 125-145.
13.Lin, Z., Ogden, J., Fan, Y., & Chen, C.-W. (2008). The fuel-travel-back approach to hydrogen station siting. International Journal of Hydrogen Energy, 33(12), 3096-3101.
14.Mirae Asset Research (2009). Korea/Alternative Energy, Korea.
15.Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 111(3), 423-447.
16.Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The Location of Emergency Service Facilities. Operations Research, 19(6), 1363-1373.
17.Upchurch, C., & Kuby, M. (2010). Comparing the p-median and flow-refueling models for locating alternative-fuel stations. Journal of Transport Geography, 18(6), 750-758.
18.Upchurch, C., Kuby, M., & Lim, S. (2009). A Model for Location of Capacitated Alternative-Fuel Stations. Geographical Analysis, 41(1), 85-106.
19.Wang, Y.-W., & Wang, C.-R. (2010). Locating passenger vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review, 46(5), 791-801.
20.Wang, Y.-W., & Lin, C.-C. (2009). Locating road-vehicle refueling stations. Transportation Research Part E: Logistics and Transportation Review, 45(5), 821-829.
21.Wang, Y.-W. (2007). An optimal location choice model for recreation-oriented scooter recharge stations. Transportation Research Part D: Transport and Environment, 12(3), 231-237.
22.Zeng, W., Castillo, I., & Hodgson, M. (2008). A Generalized Model for Locating Facilities on a Network with Flow-Based Demand. Networks and Spatial Economics, 10(4), 579-611.
三、網站資料
1.BP Statistical Review of World Energy:http://www.usaee.org/usaee2009/submissions/presentations/Finley.pdf
2.Coulomb Technologies:http://www.coulombtech.com/
3.International Energy Agency(IEA):http://www.iea.org/
4.Lexus:http://www.lexus.com.tw/hybrid.aspx
5.LUXGEN :http://www.luxgen-motor.com.tw/
6.Treehugger:http://www.treehugger.com/
7.U.S. Department of Energy:http://www.energy.gov/
8.Toyota:http://www.toyota.com.tw
9.三陽機車(Sym):http://www.sym.com.tw
10.工業技術研究院網站:http://www.itri.org.tw/
11.中華汽車:http://www.e-moving.com.tw/#/home/
12.比雅久(PGO):http://www.pgo.com.tw/index.shtml
13.交通部網站:http://www.motc.gov.tw/
14.光陽機車(Kymco):http://www.kymco.com.tw/www2010/index.html
15.行政院網站:http://www.ey.gov.tw/mp.asp?mp=907
16.亞太燃電:http://www.apfct.com/tw
17.易維特:http://www.evt.com.tw/html/evt_info/chinese/index.htm
18.飛寶動能:http://www.freepowergroup.com.tw/
19.益通動能:http://chinese.e-ton.com.tw/index.php
20.經濟部工業局網站:http://www.moeaidb.gov.tw/external/view/tw/index.html
21.經濟部能源局網站: http://www.moeaboe.gov.tw/
22.裕隆汽車:http://www.tobe-motor.com.tw/home/ev_intro.asp
23.綠色能源產業資訊網:http://www.taiwangreenenergy.org.tw/
24.綠鑽:http://www.gdp-tech.com/
25.澎湖縣政府:http://www.penghu.gov.tw/