簡易檢索 / 詳目顯示

研究生: 許巧玲
Hsu, Chaio-Ling
論文名稱: 奈米金粒子的表面修飾及其在氣/液界面單分子膜行為的探討
Surface Modification of Gold Nanoparticles and Their Monolayer Behavior at Air/Water Interfaces
指導教授: 李玉郎
Lee, Yuh-Lang
張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 136
中文關鍵詞: 單分子膜金奈米粒子LB technology
外文關鍵詞: gold nanoparticles, monolayer, LB technology
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用烷基硫醇(C18SH、C12SH、C6SH)對金奈米粒子表面作疏水化的化學改質,此外亦利用MSA改質金粒子表面,使其暴露羧基根,以吸附陽離子型界面活性劑,此一方法稱為物理/化學改質法。本研究探討兩種不同改質法所得到的金奈米粒子在氣/液界面上的行為、粒子膜的結構型態,及分散劑(氯仿、己烷)對於粒子分散行為的影響。
    實驗結果發現對於以長碳鏈硫醇(C18SH、C12SH)修飾的金粒子分散於氯仿的效果較己烷佳;以短碳鏈硫醇(C6SH)修飾的金粒子不論分散於氯仿或己烷的分散情形皆不錯。金粒子在氣/液界面上的分佈性與粒子在溶劑中的分散性及溶劑的分佈係數(spreading coefficient)有關。由BAM、TEM可以觀察到Au-C18、Au-C12會在氣/液界面上產生聚集現象,這是由於粒子在溶劑中分佈性不佳及粒子與副相間較差的作用力所造成的結果。而由於Au-C6於氯仿及己烷中分散情形皆佳且粒子與界面的作用力不錯,使得Au-C6在氣/液界面上能形成均勻的粒子薄膜。
    以物理/化學改質法所得到的金奈米粒子分散於氣/液界面上時,由於界面活性劑具可逆的吸附特性,液面下的界面活性劑分子會由金粒子表面脫附,而使得金粒子具有雙親性,此一現象有利於多層而利於單分子膜的沉積。不過界面活性劑的脫附造成粒子穩定性的降低,也使得粒子聚集的機會增加。

    Gold nanoparticles were hydrophobized either modified by chemical graft with alkyelthiol (C18SH、C12SH、C6SH) or by chemical modification with MSA first, following by physical adsorption of cationic surfactants. The later method is termed as physical/chemical modification. The effects of the two modification methods on the monolayer behaviors of gold nanoparticles at the air/water interfaces are studied, as well as the packing structure of the particulate films. Besides, the effect of dispersion solvents (chloroform and hexane) on the monolayer characteristic was also discussed. The experimental results show that the dispersion of gold nanoparticles modified by long chain thiols (Au-C18、Au-C12) is poor in hexane, but satisfactory in chloroform. The gold particles modified by short chain thiol (Au-C6) can disperse well both in chloroform and hexane. The spreading of the gold particles on the subphase was found to be affected by the dispersion state of the particles in the spreading solvent and by the spreading coefficient of solvents. The results of Brewter angle microscopy (BAM) and transmission electron microscopy (TEM) indicate that Au-C18 and Au-C12 forms aggregative domains at the air/liquid interface not only due to the poor dispersion in the spreading solvent but also to the weak interaction between the particles and subphase. On the contrary, uniform dispersed particulate monolayer was observed for the Au-C6 particles. For the physical/chemical modification method, the surfactants adsorbed on the particles will desorbed into the subphase when the particles are positioned at the air/liquid interface. The amphiphilic characteristic of the particles makes possible to deposit the particulate LB with multilayer structure. However, the monolayer stability is comparatively poor especially when a short chain surfactant (C8TAB) was used

    中文摘要Ⅰ 英文摘要Ⅱ 致謝Ⅳ 總目錄Ⅴ 表目錄Ⅸ 圖目錄Ⅹ 符號表ⅩⅥ 第一章 緒論1 1.1 前言 1 1.2 奈米粒子特性1 1.2.1 量子尺寸效應 1 1.2.2 表面效應2 1.2.3 小尺寸效應3 1.2.4 表面電漿共振5 1.3 奈米粒子製備法5 1.3.1 雷射消熔法7 1.3.2 金屬氣相合成法7 1.3.3 化學還原法8 1.3.4 微乳化/逆微胞法 8 1.4 研究動機及目的9 1.5 文獻回顧12 1.5.1 二維粒子組裝法12 1.5.2 奈米金粒子的製備15 1.5.3 化學改質法15 1.5.3 物理改質法17 第二章 實驗19 2.1實驗藥品19 2.2 實驗裝置及測量原理19 2.2.1 Langmuir-Blodgeet19 2.2.2 靜態接觸角測量儀26 2.2.3 穿透式電子顯微鏡28 2.2.4 熱重分析儀29 2.2.5 原子力顯微鏡31 2.2.6 Brewster angle microscope (BAM)33 2.2.7 雷射光散射法粒徑測定儀37 2.3實驗方法38 2.3.1奈米金粒子的製備及化學改質法 38 2.3.2奈米金粒子的製備及化學/物理改質法40 2.3.3 玻璃基板的清洗及表面改質42 2.3.4 金奈米粒子薄膜等溫線量測42 2.3.5金奈米粒子薄膜遲滯曲線量測43 2.3.6金奈米粒子薄膜鬆弛曲線量測43 2.3.7金奈米粒子Langmuir-Blodgett Film的製備46 2.3.8 BAM操作46 第三章 結果與討論49 3.1化學改質法49 3.1.1 硫醇改質程度49 3.1.2 粒子在溶液中分散情形52 3.1.3 單分子層行為60 3.1.4 Langmuir-Blodgett Films75 3.1.5 遲滯曲線87 3.1.6 鬆弛曲線98 3.2物理/化學改質法102 3.2.1 粒子在溶劑中分散情形 102 3.3.2 單分子層行為107 3.3.3 遲滯曲線110 3.3.4 鬆弛曲線115 3.3.5 Langmuir-Blodgett Films117 第四章 結論與建議124 4.1 結論124 4.2 建議124 參考文獻127 自述136

    Anita S.,Ashavani K.,Saikat M.,Murali S.,“Langmuir-Blodgett of Laurylamine -modified hydrophobic gold nanoparticles organized at the air-water interface”,J.Collid. Interface Sci. , 2003 ,260 ,367

    Armstrong, A. J., Mockler, R. C., and O’Sullivan, W. J., “Isothermal-expansion melting of two-dimensional colloidal monolayers on the surface of water,” J. Phys. Condens. Matter , 1707, 1989

    B.L.V.Prasad, Savka I. Stoeva and Christopher M.Sorensen et al. “Digestive Ripening of Thiolated Gold Nanoparticles:The Effect of Alkyl Chain Length” ,Langmuir ,2002, 18,7515

    Borhren,C.F. and Huffman,D.R. “Absorption and Scattering of light by small particles”,Wily-interscience,1998
    Cayre OJ, Paunov VN, “Contact Angles of Colloid Silica and Gold Particles at Air-Water and Oil-Water Interfaces Determined with the Gel Traooing Technique”, Langmuir ,20, 9594-9599, 2004

    Chen CW., Liu TJ., “Maximum withdrawal speed of Langmuir-Blodgett Film Deposition of arachidic acid”, Journal of Colloid and Interfaces Science, 298, 298-305, 2006

    Chen FX, Xu GQ and Hor TSA, “Prepartion and Assembly of Colloidal Gold Nanoparticles in CTAB-stabilized Reverse Microemulsion”, Materials Letters, 57, 3282-3286, 2003

    Clint, J. H., and Taylor, S. P., “Particle size and interparticle forces of overbased detergents: a Langmuir trough study,” Colloid and Surfaces 65, 61, 1992

    Collier, C. P., Saykally, R. J., Shiang, J. J., Henrich, S. E., and Heath, J. R., “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science 277, 1978, 1997

    Daniel M.C.; Astruc D.“Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology,Catalysis,and Nanotechnology”, Chem. Rev. ,2004,104,293

    David I.Gittins and Frank Caruso,“Spontaneous Phase Transfer of Nanoparticle Metals from Organic to Aqueous Media ”,Angew.Chem.Int.Ed.,2001,40,16
    Gareth Roberts,” Langmuir-Blodgett Films”, Plenum Press, New York and London, 1990

    Gattas-Asfura KM, Constantine CA, Lynn MJ, et al.,” Characterization and 2D Self-Assembly of CdSe Quantum Dots at the Air-Water Interface”, J.Am.Chem.Soc, 127, 14640-14646, 2005

    Ghezzi, F., Earnshaw, J. C., Finnis, M., and McCluney, M., “Pattern formation in colloidal monolayers at the air–water interface,” J. Colloid Interface Sci. 238, 433, 2001

    Heriot S.Y., Pedrosa J.M., Camacho L. andRichardson T.M.“Langmuir monolayer properties of 4-methylbenzenethiol capped gold nanoparticles”,Material Science and Engineering C,2006,26,154

    Horvolgyi, Z., Nemeth, S., and Fendler, J. H., “Monoparticulate layers of silanized glass spheres at the water-air interface: particle-particle and particle-subphase interactions,” Langmuir 12, 997, 1996

    Huang S.,Tsutsui G.,Sakaue H.,Shingubara S. and Takahagi T“Experimental conditions for a highly ordered monolayer of gold nanoparticles fabricated by the Langmuir-Blodgett method”, J.Vac.Sci.Technol.B,2001,19,1071

    Hurd, A. J., and Schaeffer, D. W., “Diffusion-limited aggregation in two dimensions,” Phys. Rev. Lett. 54, 1043, 1985

    Hussain I, Wang ZX, and Cooper AI, et al.,”Formation of Spherical Nanoparticles by the Controlled Aggregation of Gold Colloids”, Langmuir, 22, 2938-2941,2006

    Iakovenko, S. A. Trifonov, A. S., Mamedov, A., Nagesha, D. K., Hanin, V. V., Soldatov, E. C., and Kotov, N. A., “One- and two-dimensional arrays of magnetic nanoparticles by the Langmuir-Blodgett technique,” Adv. Mater. 11, 388, 1999

    Jain N.,Gole A.,Langevin D and Sastry M.,“Time-dependent complexation of glucose-reduced gold nanoparticles with octadecylamine Langmuir monolayer”, J.Collid.Iinterface Sci.,2004,270,133

    James R. Heath, Charles M.Knobler and Daniel V.Leff , “Pressure/Tempertaure Phase Diagrams and Superlattices of Organically Functionalized Metal Nanpcrystal Monolayers:The Influence of Particle size,Size Distribution,and Surface Passivant” , J. Phys. Chem. B ,1997,101

    Jimenez VL, Georganopoulou DG and White RJ, et al.,” Hexanethiolate Monolayer Protected 38 Gold Atom Cluster”, Langmuir, 20, 6864-6870, 2004

    Kampes, A., and Tieke, B., “Self-assembly of carboxylaed latex particles at charged surfaces: influences of preparation conditions on the state of order of the monolayers,” Materials Science and Engineering C 8-9, 195, 1999

    Kumar A, Mandal S, Selvakannan PR, et al., ”Investigation into the interaction between surface-bound alkylamines and gold nanoparticles”, Langmuir, 19, 6277-6282, 2003

    Kurth, D. G., Lehmann, P., and Lesser, C., “Engineering the surface chemical properties of semiconductor nanoparticles: surfactant-encapsulated CdTe-clusters,” Chem. Commun. P.949-950

    L.Motte and M.P.Pileni, ”Influence of Length of Alkyl Chains Used to Passivate Silver Nanoparticles on Two- and Three-Dimensional Self-Organization ”, J. Phys. Chem. B, 102, 4104-4109,1998

    Lala N, Chittiboyina AG and Chavan SP, et al., “Biotinylation of Colloidal Gold Particles Using Interdigitated Biolays: a UV-visible Spectroscopy and TEM Study of the biotin-avidin Molecular Recognition Process”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 205, 15-20, 2002

    Lin J, Zhou WL and O'Connor CJ,” Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles”, Materials Letters, 49, 282-286, 2001

    Liu, J.Mendoza,S;Roman,E;Lynn,M.J.;Xu,R. and Kaifer, “Cyclodextrin-Modified Gold Nanospheres. Host-Guest Interactions at Work to Control Colloidal Properties” A. E. J. Am. Chem. Soc, 1999, 121, 4304

    Martin, J. E.; Wilcoxon J. P.; Odinek J. and Provencio, P.“Control of the Interparticles Spacing in Gold Nanoparticles Superlattices”, J.Phys.Chem.B,2000,104,9475

    Martínez-López, F., Cabrerizo-Vílchez, M. A., and Hidalgo-Álvarez, R., “Colloidal interaction at the air–liquid interface,” J. Colloid Interfaces Sci. 232, 303, 2000

    Muramatsu, K., Takahashi, M., Tajima, K., and Kobayashi, K., “Two-dimensional assemblies of colloidal sio2 and tio2 particles prepared by the Langmuir–Blodgett technique,” J. Colloid Interfaces Sci. 242, 127, 2001

    Onoda, G. Y., “Direct observation of two-dimensional, dynamic clustering and ordering with colloids,” Phys. Rev. Lett. 55, 226, 1985

    Patil V., Malvankar RB and Sastry M.,” Role of Particle Size in Individual and Competitive Diffusion of Carboxylic Acid Derivatized Colloidal Gold Particles in Thermally Evaporated Fatty Amine Films”, Langmuir, 15,8197-8206, 1999

    Paunov, V. N., “Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces,” Langmuir 19, 7970, 2003

    Prasad B. L. V.; Stoeva S. I.; Sorensen C. M. and Klabunde K. J.“Digestive Ripening of Thiolated Gold Nanoparticles:The Effect of Alkeyl Chain Length ”,Langmuir,2002,18,7515

    Robinson, D. J., and Earnshaw, J. C., “Experimental study of colloidal aggregation in two dimensions. II. Kinetic aspects,” Phys. Rev. A. 46, 2055, 1992

    Santhanam V, Liu J, Agarwal R, et al.,” Self-Assembly of Uniform Monolayer Arrays of Nanoparticles”, Langmuir, 19,7881-7887, 2003

    Sastry M.,Gole A. and Patil V., “Lamellar Langmuir-Blodgett films of hydrophobized colloidal gold nanoparticles by organization at air-water interface”,Thin Solid Films,2001,384,125

    Sau TK, Murphy CJ, ” Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes”, Langmuir, 21, 2923-2929, 2005

    Sbrana F. and Ricci D.,“Langmuir films of thiolated gold nanoparticles transferred onto functionalized substrate:2-D local organization”,Materials Science and Engineering C,2002,22,187

    Self-Assembly Techniques,University of cologne, Germany Sheeney-Haj-Ichia L, Pogorelova S, Gofer Y, et al.,” Enhanced photoelectrochemistry in CdS/Au nanoparticle bilayers”, Adv.Funct.Mater.,5, 416-424, 2004

    Sun, J., and Stirner, T., “Molecular dynamics simulation of the surface pressure of colloidal monolayers,” Langmuir 17, 3103, 2001

    Terrill RH, Postlethwaite TA and Chen CH, et al.,” Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters”, J.Am. Chem.Soc, 117, 12537-12548, 1995

    Tolnai, Gy., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Zs., Kovacs, A. L., Ramsden, J. J., and Horvolgyi, Z., “Preparation and characterization of surface-modified silica-nanoparticles,” Langmuir 17, 2683, 2001

    Tsutsui G., Huang S. and Sakaue H. et al.,”Well-Size-Controlled Colloidal Gold Nanoparticles Dispersed on Organic Solvents”, Jpn.J.Appl.Phys., 400, 346-349, 2001

    Ujihara M., Mitamura K., et al.,” Fabrication of Metal Nanoparticle Monolayers on Amphiphilic Poly(amido amine) Dendrimer Langmuir Films “, Langmuir ,22, 3656-3661, 2006

    Wang, C. Zhang, Y., Dong, L., Fu, L., Bai, Y., Li, T., Xu, J., and Wei, Y., “Two-dimensional ordered arrays of silica nanoparticles,” Chem. Mater. 12, 3662, 2000

    X Y Chen,J R Li and L Jiang,“Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technology”,Nanotechnology,2000,11,108

    Yonezawa T., Kunitake T., ”Practical Preparation of Anionic Mercapto
    Ligand-Stabilized Gold Nanoparticles and Their Immobilization”,
    Colloids and Surfaces A: Physicochemical and Engineering
    Aspects,192-199,1999

    Zhu H.F.,Cheng Tao.,Zheng S.,Wu S.K. and Li J.B.“Effect of alkeyl length on phase transfer of surfactant capped Au nanoparticles across the water/toluene interface”,Colloids and Surfaces A:Physicochem.Eng.Aspects, 2005, 256, 17

    王崇人,”神奇的奈米科技”, 科學發展,354期,48,2002年6月

    林維信,”具有不同親疏水性二氧化矽粒子在氣液界面行為及其薄膜結構之研究”,國立成功大學化學工程學系碩士論文,民國93年

    蔡淑惠,”合金奈米粒子的製備及應用”, 國立成功大學化學學系碩士論文,民國92年

    下載圖示 校內:2007-07-20公開
    校外:2007-07-20公開
    QR CODE